

Programming
Multiplayer

Games

Andrew Mulholland
and Teijo Hakala

Wordware Publishing, Inc.

Library of Congress Cataloging-in-Publication Data

Mulholland, Andrew.
Programming multiplayer games / by Andrew Mulholland and Teijo Hakala.

p. cm.
Includes index.
ISBN 1-55622-076-6 (pbk.; companion cd-rom)
1. Computer games--Programming. I. Hakala, Teijo. II. Title.
QA76.76.C672M855 2004
794.8'1711—dc22 2003027637

CIP

© 2004, Wordware Publishing, Inc.

All Rights Reserved

2320 Los Rios Boulevard
Plano, Texas 75074

No part of this book may be reproduced in any form or by any means
without permission in writing from Wordware Publishing, Inc.

Printed in the United States of America

ISBN 1-55622-076-6

10 9 8 7 6 5 4 3 2 1
0403

UNIX is a registered trademark of The Open Group in the United States and other countries.
All brand names and product names mentioned in this book are trademarks or service marks of their respective
companies. Any omission or misuse (of any kind) of service marks or trademarks should not be regarded as intent to
infringe on the property of others. The publisher recognizes and respects all marks used by companies, manufacturers,
and developers as a means to distinguish their products.
This book is sold as is, without warranty of any kind, either express or implied, respecting the contents of this book and
any disks or programs that may accompany it, including but not limited to implied warranties for the book’s quality,
performance, merchantability, or fitness for any particular purpose. Neither Wordware Publishing, Inc. nor its dealers or
distributors shall be liable to the purchaser or any other person or entity with respect to any liability, loss, or damage
caused or alleged to have been caused directly or indirectly by this book.

All inquiries for volume purchases of this book should be addressed to Wordware Publishing,
Inc., at the above address. Telephone inquiries may be made by calling:

(972) 423-0090

Contents

About the Authors. xiv
Introduction . xv

Part I — Theory

Chapter 1 Introduction to Windows Programming. 3
Introduction . 3
Windows Messaging System . 3
Creating a Window . 4
Sending Information to Your Window . 8
Static Link Libraries . 9

Creating a Static Link Library . 10
Using a Static Link Library. 13

Summary . 14

Chapter 2 Using Databases . 15
Introduction . 15
What Is MySQL? . 15
Installing MySQL . 16
SQL Statements . 19
Data Definition Language . 19

Creating and Dropping Databases 19
Creating a Database . 20
Dropping a Database . 21

Column (Field) Types in MySQL 22
Adding, Modifying, and Dropping Tables 24

Creating Tables. 24
Modifying Tables . 26
Dropping (Removing) Tables 28

Data Manipulation Language (DML) . 29
Inserting Data . 30
Modifying Data . 32
Removing (Deleting) Data . 34
Using Select Statements . 35

Relational Databases. 40
Data Import Methods . 44

Importing from a Text File . 44

iii

Importing from a Native Source . 45
Backing Up and Restoring Data . 47

Backing up a Database to a File . 47
Restoring a Backed-Up Database 49

MySQL C++ Interface . 50
Example 1 — Connecting and Retrieving Data from MySQL 50
Example 2 — Updating Data in MySQL from an Application 53

Summary . 55

Chapter 3 Creating Web-Based Server Interfaces 57
Introduction . 57
Setting Up an Apache 1.3.x Web Server 57
Installing PHP4 for Apache 1.3.x . 60
Using PHP: Hypertext Preprocessor . 63

The Basics. 64
Example 1 — index.php . 64

Variables . 65
Example 2 — index2.php . 65

Operators and Loops . 67
Example 3 — index3.php . 67

Conditional Statements. 68
Example 4 — index4.php . 68

Arrays . 70
Functions . 70

Example 5 — index5.php . 70
User Input . 71

Example 6a — input.php. 71
Example 6b — output.php . 72

The “Command” System . 73
Example 7a — core.php . 74
Example 7b — welcome.php 74
Example 8a — core.php . 76
Example 8b — welcome.php 76
Example 8c — page1.php . 77
Example 8d — page2.php . 77

Accessing MySQL . 78
MySQL Example 1 — Connecting and Disconnecting 78
MySQL Example 2 — Storing and Retrieving Data 79
MySQL Example 3 — Updating and Removing Data 84

Using FastTemplate . 90
Multiple Templates . 93
Converting the Command Parser Example to FastTemplate 95

Summary . 101

Chapter 4 Introduction to TCP/IP. 103
Introduction . 103

iv

Contents

What Is a Protocol? . 103
OSI Model. 104

OSI Model Layers . 104
Internet Protocol . 106
Introduction to the Transport Layer . 108

Transmission Control Protocol . 108
User Datagram Protocol . 109

Ports . 109
Introduction to Sockets . 110

Socket Types . 111
Address. 112
Platforms. 112
History of WinSock . 113

Summary . 113

Chapter 5 Basic Sockets Programming 115
Introduction . 115
WinSock Initialization . 115

WSAStartup Function (Win32) . 115
WSACleanup Function (Win32). 116
WSAEnumProtocols Function (Win32) 117
WinSock Initialization Function 117

Error Handling . 120
WSAGetLastError Function (Win32) 120

Sockets Data Types. 121
Platform-specific Data Types . 121
Address Structures . 121

IPv4 Address Structure . 121
IPv6 Address Structure . 122
Generic Address Structure. 123

Basic Sockets Functions . 124
socket Function (Unix, Win32) . 124
bind Function (Unix, Win32) . 125
connect Function (Unix, Win32) 126
listen Function (Unix, Win32) . 127
accept Function (Unix, Win32) . 128
close Function (Unix)/closesocket Function (Win32) 129

Input/Output Functions . 129
send Function (Unix, Win32) . 129
recv Function (Unix, Win32) . 131
sendto Function (Unix, Win32) . 132
recvfrom Function (Unix, Win32). 133

Address Data Conversion Functions . 133
inet_aton Function (Unix, Win32) 134

Client/Server Programming . 134
Server Methods . 134

v

Contents

Clients . 135
Byte Ordering. 136
Creating a Server . 136

TCP. 137
UDP . 138
Simple Echo TCP Server . 139

main Function . 142
InitSockets Function . 142
ServerProcess Function . 145

Simple Echo UDP Server . 146
InitSockets Function . 148
ServerProcess Function . 149

Creating a Client . 150
TCP. 150
UDP . 151
Simple Echo TCP Client . 151

main Function . 153
InitSockets Function . 154
ClientProcess Function. 155

Simple Echo UDP Client . 157
InitSockets Function . 159
ClientProcess Function. 159

Running the Simple Echo Application. 160
Summary . 161

Chapter 6 I/O Operations . 163
Introduction . 163
Detecting Network Events . 163

select (Unix, Win32). 163
Macros . 164
WSAAsyncSelect (Win32) . 165
WSAEventSelect (Win32). 165
WSAWaitForMultipleEvents (Win32) 166
Event Object . 166

Multithreading . 167
What Is Multithreading? . 167
CreateThread (Win32) . 168
pthread_create (Unix) . 169

I/O Strategy . 169
Blocking I/O . 169
Non-blocking I/O . 170
Signal-driven I/O . 170
Multiplexing I/O . 171

I/O Control . 172
ioctl (Unix)/ioctlsocket (Win32) 172
setsockopt/getsockopt (Unix, Win32) 173

vi

Contents

shutdown (Unix, Win32) . 174
Broadcasting . 175

Searching for Servers . 175
Broadcast Function . 176

Summary . 177

Part II — Tutorials

Tutorial 1 Using 2DLIB . 181
Introduction . 181
Configuring Visual Studio . 181
Creating a Skeleton Project . 182

Creating the Workspace. 182
Adding the Static Libraries . 183
Adding the Source File . 183
Creating a Basic Windowed Application with 2DLIB 184

The WinMain Function . 184
The Windows Procedure . 185
The Complete Code . 187

Using the 2DLIB Graphics Routines . 190
2D Positions on the Screen . 190
Use of Colors . 190
Plotting a Single Pixel. 191
Drawing a Line . 191
Drawing a Rectangle/Filled Rectangle 191
Drawing a Triangle/Filled Triangle 191
Graphic Loading Functions . 192
Graphics Display (Blitting) Function 192
Keyboard Input Method . 193

2DLIB Example 1 — Moving Primitives with the Cursor Keys 195
Complete Code Listing for Example 1 197

2DLIB Example 2 — Loading and Rotating Graphics 200
Complete Code Listing for Example 2 201

Summary . 203

Tutorial 2 Creating Your Network Library 205
Introduction . 205
Why Create a Network Library of Our Own?. 206
Planning the Structure . 206
Planning the Functionality . 207

Identifying Hosts . 207
Sending Data to Hosts . 208
Pinging — Calculating Network Latency 209
Timing Out . 209

Building the Library . 209
Windows . 210

vii

Contents

Unix/Linux . 211
Creating Independent Code . 212

Creating Definitions for Data Types 212
Log System . 213

StartLogConsole Function . 214
dreamConsole Constructor . 215
dreamConsole Destructor . 215
println Function . 215
StartLog Function . 216
LogString Function . 217
StopLog Function . 218

Getting Started . 219
Setting Up Source and Header Files 219

dreamSock.h File . 220
dreamMessage Class . 225
dreamClient Class . 226
dreamServer Class . 228

Global Setup Functions . 229
dreamSock_Initialize . 229
dreamSock_InitializeWinSock 230
dreamSock_Shutdown . 231

Global Socket Functions . 232
dreamSock_Socket Function 238
dreamSock_SetNonBlocking Function 239
dreamSock_SetBroadcasting Function 239
dreamSock_StringToSockaddr Function. 240
dreamSock_OpenUDPSocket Function 241
dreamSock_CloseSocket Function. 243
dreamSock_GetPacket Function 243
dreamSock_SendPacket Function 244
dreamSock_Broadcast Function 245
dreamSock_GetCurrentSystemTime Function 246
dreamSock_Linux_GetCurrentSystemTime Function 246
dreamSock_Win_GetCurrentSystemTime Function 247

Retrieving Error Values . 248
Summary of Global Functions . 248

Creating dreamSock Network Library 248
dreamMessage Class Member Variables. 249
dreamMessage Class Functionality 249

Init Function . 253
Clear Function . 253
GetNewPoint Function . 254
AddSequences Function . 255
Write Function . 255
WriteByte Function. 255
WriteShort Function . 256

viii

Contents

WriteLong Function . 256
WriteFloat Function . 256
WriteString Function . 257
BeginReading Function. 257
Read Function. 257
ReadByte Function . 258
ReadShort Function . 258
ReadLong Function . 259
ReadFloat Function . 259
ReadString Function . 259
dreamMessage Summary 260

dreamClient Class Member Variables 260
dreamClient Class Functionality 262

dreamClient Constructor. 268
dreamClient Destructor . 268
Initialize Function. 268
Uninitialize Function . 269
Reset Function . 270
DumpBuffer Function . 270
System Messages vs. User Messages. 270
SendConnect Function . 271
SendDisconnect Function 272
SendPing Function . 272
ParsePacket Function. 273
GetPacket Function. 275
SendPacket Function (Internal Message) 276
SendPacket Function (External Message) 278
dreamClient Summary . 279

dreamServer Class Member Variables 280
dreamServer Class Functionality 280

dreamServer Constructor 289
dreamServer Destructor . 289
Initialize Function. 290
Uninitialize Function . 290
SendAddClient Function . 290
SendRemoveClient Function. 292
SendPing Function . 293
AddClient Function . 293
RemoveClient Function . 295
ParsePacket Function. 297
CheckForTimeout Function 299
GetPacket Function. 301
SendPackets Function . 303
dreamServer Summary. 304

Summary . 304

ix

Contents

Tutorial 3 Creating a Basic Network Application with
dreamSock . 305

Introduction . 305
Planning the Functionality . 306

Catching Exceptions . 306
Creating a Basic Client Application . 306

signin.h File . 307
CSignin Class . 308
network.h File . 309
main.h File . 309
common.h File . 310
main.cpp File. 310
Global Variables . 316
CreateAccountDialogProc Function 316
WinMain Function . 319
signin.cpp File — CSignin Class Methods 323

CSignin Constructor . 329
CSignin Destructor . 329
ReadPackets Function . 329
AddClient Function . 333
RemoveClient Function . 334
RemoveClients Function . 335
SendSignIn Function . 336
SendKeepAlive Function . 336
Connect Function . 337
Disconnect Function . 337
RunNetwork Function . 337

Creating a Basic Server Application. 338
signin.h File . 338
CSigninServer Class . 339
network.h File . 340
common.h File . 340
main.cpp File. 341
Global Variables . 347
WindowProc Function . 347
WinMain Function . 347
daemonInit Function . 351
keyPress Function. 352
main Function . 353
signin.cpp File — CSigninServer Class Methods 355

CSigninServer Constructor 361
CSigninServer Destructor 361
InitNetwork Function . 362
ShutdownNetwork Function 362
ReadPackets Function . 362
SendExitNotification Function 366

x

Contents

AddClient Function . 366
RemoveClient Function . 367
RemoveClients Function . 368
RunNetwork Function . 369

Summary . 369

Tutorial 4 Creating the Game Lobby 371
Introduction . 371
Creating the Lobby Client Application 371
Creating the Dialogs . 372

Lobby Dialog . 372
Create Game Dialog . 375
Create View Players Dialog. 376
Join Game Dialog . 376

Lobby System Code . 377
Lobby Client Code . 377

lobby.h File . 377
network.h File . 379
main.h File . 379
main.cpp File. 380

CreateViewPlayersDialogProc Function 380
CreateGameDialogProc Function 380
JoinGameDialogProc Function 382
LoginDialogProc Function 382
LobbyDialogProc Function 384
WinMain Function . 386

lobby.cpp File — CLobby Class Methods 389
RefreshPlayerList Function 398
ReadPackets Function . 399
RequestGameData Function 401
SendChat Function . 402
SendCreateGame Function. 402
SendRemoveGame Function 402
SendStartGame Function. 403
Connect Function . 403
Disconnect Function . 403
RunNetwork Function . 404
Unimplemented Functions 405

Lobby Server Code . 406
lobby.h File . 406
network.h File . 407
main.cpp File. 407
lobby.cpp File — CLobbyServer Class Methods 408

ReadPackets Function . 418
Unimplemented Functions 425

Summary . 425

xi

Contents

Tutorial 5 Creating Your Online Game 427
Introduction . 427
Designing the Functionality . 428

Frame Time . 428
Compressing Messages . 428
Dead Reckoning . 429
Frame History . 430
Handling Messages . 430

Game Server Code . 430
server.h File . 431
network.h File . 436
main.cpp File. 436
network.cpp File — CArmyWarServer Class Part 1 437

InitNetwork Function . 449
ReadPackets Function . 449
SendCommand Function . 451
ReadDeltaMoveCommand Function 452
BuildMoveCommand Function. 453
BuildDeltaMoveCommand Function. 454

server.cpp File — CArmyWarServer Class Part 2 458
GenerateRandomMap Function 467
CalculateVelocity Function 468
CalculateHeading Function. 469
CalculateBulletVelocity Function 470
MovePlayer Function. 472
CheckFlagCollisions Function 475
Frame Function . 477

lobby.cpp File . 478
AddGame Function . 478
RemoveGame Function . 479
RemoveGames Function . 481

Summary of Server Code . 481
Game Client Code . 481

client.h File . 482
network.h File . 487
common.h File . 488
main.cpp File. 488

VectorLength and VectorSubtract Functions 488
ApplicationProc Function. 489
Dialog Procedures . 489
Main Loop. 489

network.cpp File . 490
StartConnection Function 502
SendCommand Function . 502
SendStartGame Function. 504
SendRequestNonDeltaFrame Function 504

xii

Contents

Connect Function . 504
Disconnect Function . 505
ReadMoveCommand Function 505
ReadDeltaMoveCommand Function 506
BuildDeltaMoveCommand Function. 508
RunNetwork Function . 509

client.cpp File . 511
CArmyWar Constructor and Destructor Functions. 525
InitializeEngine Function. 526
Shutdown Function . 527
DrawMap Function . 528
Frame Function . 530
CheckVictory Function . 531
KillPlayer Function . 532
GetClientPointer Function 532
CheckKeys Function . 532
CheckPredictionError Function 533
CheckBulletPredictionError Function. 534
CalculateVelocity Function 535
CalculateHeading Function. 536
PredictMovement Function 537
MoveObjects Function . 539

lobby.cpp File . 541
RefreshGameList Function. 541
RefreshJoinedPlayersList Function 541

Other Unimplemented Functions 542
Summary . 542

Index . 543

xiii

Contents

About the Authors

Andrew Mulholland has a BSc (Hons) in Com-
puter Games Technology and is a partner in a
games development company based in Scotland
called Hunted Cow Studios (www.hunted-
cow.com). The company’s current project is an
online gaming web site called CowPlay.com,
which currently offers free multiplayer games.

Teijo Hakala is a software engineer
from Jyväskylä, Finland, who special-
izes in network programming, game
programming, and optimization. He
also has wide work experience with
computer technology.

xiv

Andrew Mulholland

Teijo Hakala

Introduction

With Internet technology developing rapidly and the use of broadband
Internet services increasingly common, Internet computer gaming has
become ever more popular, while documentation on how to develop
Internet games remains inadequate. Programming Multiplayer Games

provides in-depth coverage of all the major topics associated with
online game programming, as well as giving the programmer easy to
follow, step-by-step tutorials on how to create a fully functional network
library, back-end MySQL database, and a complete, working online
game.

The book contains two main parts. The first explains practical the-
ory on how to utilize MySQL, PHP4, sockets, and basic Windows
programming. The second part consists of five extensive tutorials, lead-
ing you through the stages of creating a working online game, which
you can both learn from and expand upon.

After reading this book, you will have a solid knowledge of online
game programming and you will also be able to start making your own
online games. Also note that the companion CD contains all the source
code from the book and a ready-to-use version of the network library
you will create in the tutorial section.

We hope you enjoy reading and learning from this book as much as
we have enjoyed writing it!

xv

This page intentionally left blank.

Part I

Theory

The theory section of this book is full of practical information that will
help you understand how to make functional online games. We recom-
mend that you read through this section thoroughly before attempting
the tutorial section, as there is a lot of knowledge that will benefit you
here.

This section first covers the basics of dialog-based Windows pro-
gramming, which we will utilize in the tutorial section to create our
login and lobby system for the sample online game. Then we cover how
to use MySQL and PHP to create a back-end database for your game,
allowing you to interact with game data directly from a web browser.
We also give an introduction to TCP/IP and sockets, followed by how to
get started with sockets programming. Finally, we learn about different
ways to send data and how to modify the behavior of our sockets.

1

This page intentionally left blank.

Chapter 1

Introduction to
Windows
Programming

Introduction

The most essential knowledge anyone can have is the basics. If you
already know how to create dialog-based Windows applications, you can
skip this chapter, but if you do not, this chapter will give you a quick
and easy introduction so that you will find the rest of this book more
accessible.

Windows Messaging System

Windows controls everything through the use of its messaging system.
This is a fundamental idea to grasp if you wish to create any Windows-
based applications. Tasks to be processed by the operating system are
stored in a queue. For example, when a user clicks a button in a win-
dow, a message is added to the queue and is then sent to the
appropriate window to inform it that the button has been pressed.

3

When the operating system creates a window, the window continu-
ally checks for messages being sent to it. If it receives a relevant
message, it will react accordingly; otherwise, it will send it back to the
operating system to be reprocessed.

Each window created is assigned a unique handle that is used to con-
trol and determine which messages are relevant to that window. In
code, this is defined as the HWND, or window handle.

The main reason behind this system is to allow for multitasking and
multithreading. This means that the operating system can run more
than one application in one instance, even though a processor can only
handle one task at a time.

There is a lot more to windows than this, but this should give you a
reasonable overview of how the system works.

Creating a Window

Load up Microsoft Visual Studio and select File, New…
The following dialog box is now visible in the center of the screen.

Select the Projects tab at the top of the dialog and then choose the
Win32 Application option on the main display. Select the location for
your project, enter your project’s name, and click OK.

Next, select the type of project you wish to create. Leave it on the
default option (An empty project) and click the Finish button. A project
information box is now visible; simply click OK in this box.

Now we are working with the Visual Studio main interface. Cur-
rently the ClassView is active, but we are interested in the FileView, so
select this tab.

4 Chapter 1 / Introduction to Windows Programming

Figure 1-1

The FileView is a list of all the C and C++ source and header files that
are active in your project. Currently we do not have any files in our pro-
ject, so we need to add our main C++ source file.

Select File, New… as you did before, but this time we will be using
the Files tab instead of the Projects tab. The following dialog will be
visible.

Select the C++ Source File option as shown in Figure 1-3 and type in
the filename as main.cpp. Now click the OK button to add this empty
file to your project.

You now have your main source file in your project and it is visible in
the Visual Studio editor.

There are two main items required in a standard Windows program:
the entry point to your program, which is named WinMain, and the
Windows callback procedure, commonly named WndProc, which is
used to keep your Windows application up to date.

For what we require though, it is best to take the dialog approach,
making it even simpler to design and code. First, we need to add our
dialog, so click File, New… again, but this time you want to add a
resource script. Type in the filename as resource and click OK.

Once this is done, you will notice another tab has appeared between
the ClassView and FileView tabs. This tab is called the ResourceView;
it allows you to visually create and edit dialogs for use within your
program.

Chapter 1 / Introduction to Windows Programming 5

Figure 1-2

Figure 1-3

Once you select the ResourceView tab, you will be presented with the
resource editor. Right-click on resource.rc in the main view and then
left-click on the Insert option. You will then be presented with the fol-
lowing dialog box.

Select the Dialog option and click the New button. Now you will see a
sample dialog box in front of you. For now, we will not do much to it
except change the name of the title bar and its identifier, which I
explain in the following code.

Double-click on the sample dialog box that Visual Studio created.
Now a dialog properties box can be seen. All we are interested in here
is the ID, which will probably be set to IDD_DIALOG1, and the Cap-
tion, which should be Dialog. Let’s change the ID to IDD_CLIENT and
the Caption to Window Example.

It’s time to go back and do some code now. We have our dialog tem-
plate that we can call from our code, so let’s do it. Here is the code
required to make your dialog window appear on the screen. The OK
button on the dialog can be pressed but will have no action, whereas
the Cancel button will close the dialog.

// Simple Windows Code
#include <windows.h>
#include "resource.h"

LRESULT CALLBACK
ClientDlgProc(HWND DialogWindow, UINT Message, WPARAM wParam, LPARAM lParam)
{

// Process Messages
switch(Message)
{
case WM_INITDIALOG:

return FALSE;

case WM_COMMAND:

6 Chapter 1 / Introduction to Windows Programming

Figure 1-4

Figure 1-5

switch(wParam)
{
case IDCANCEL:

EndDialog(DialogWindow, FALSE);
return FALSE;

default:
break;

}
break;

default:
break;

}
return FALSE;

}

int APIENTRY
WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR lpCmdLine,

int nCmdShow)
{

DialogBox((HINSTANCE) hInstance, MAKEINTRESOURCE(IDD_CLIENT), NULL,
(DLGPROC) ClientDlgProc);

return 0;
}

NOTE If you get an error that tells you it can’t find afxres.h, you
need to install MFC support for Visual Studio, which comes with the
Visual Studio package.

If you have never seen Windows code before, the above code may look
complex and a little confusing. Welcome to the world of Windows! Well,
it’s not that bad, honest.

Let’s start with the WinMain function. This is simply the point at
which Windows starts executing your code. Do not worry about the
variables that are passed in; they are controlled by Windows and are
beyond the scope of this book.

The main issue here is the DialogBox function and the
ClientDlgProc callback procedure that creates our dialog window
on the screen. The first parameter is the instance of the application that
you simply take from the first parameter of the WinMain function.
Next is the identifier that we set when we created the template for our
dialog. The third parameter is of no interest to us so we set it to NULL,
but the final one is. This is a pointer to the update function for the dia-
log. Each dialog you create requires this update function (basically the
same idea as a Windows procedure). In this update function is where
you set the actions for buttons and other useful tools. So we set this
update function to our callback function for the dialog
(ClientDlgProc).

Chapter 1 / Introduction to Windows Programming 7

For example, the identifier for the Cancel button is IDCANCEL. As
you can see in the code, there is a case statement for the Cancel button
so when it is clicked, it will close the dialog window. Other buttons can
be easily added to the template using the toolbox on the template edi-
tor. Just remember that each button must contain a unique ID so you
can reference it from within your code.

Sending Information to Your Window

In addition to being useful for debugging, being able to update informa-
tion to a window is essential knowledge and can be used in many
situations, such as displaying how many players are connected to the
game server.

First you have to add a static text string to the dialog window. To do
this you need to go back to the template editor by selecting the
ResourceView tab as before. Then you simply double-click on the
IDD_CLIENT text as seen in Figure 1-6 to bring up your dialog in the
main area.

Next, select the Aa button from the Controls toolbox and place it
somewhere on your dialog as seen in the figure. Now double-click on
the text you added to the dialog box to display its properties.

The following dialog will now be visible on the screen. All we need to
change here is the ID. Change the text IDC_STATIC to IDC_
SERVERSTATUS. This will give it more meaning when it comes to
adding it into the code.

8 Chapter 1 / Introduction to Windows Programming

Figure 1-6

Figure 1-7

Now that we have some text, we want to be able to set it to a value
from within our code. For example, if we want the text to read “Server
Online,” add this line of code after the line that contains “case
WM_INITDIALOG”:

SendDlgItemMessage(DialogWindow,IDC_SERVERSTATUS,
WM_SETTEXT,NULL,(long)"Server Online");

Then when the dialog box is initialized, Windows will send a message
to the dialog box to tell it to update the IDC_SERVERSTATUS text
with the string you supplied in the function. In this case, it would
update the text from “Static” to “Server Online.”

The first parameter is the handle to the dialog, which is the first
variable that is passed into the dialog update procedure. The second is
the identifier for what you want to change or update. Next comes the
command that you wish to send. There are many commands and the
best way to figure out how they work is just to experiment with them.
For now we are using WM_SETTEXT, which tells Windows to change
a static text string in a dialog box. The fourth variable is not used for
the WM_SETTEXT command, so we simply set it to NULL. The final
variable is used to declare the string that we want to update the static
text with, in this case “Server Online.” Also note that the string must
be typecast to a long.

TIP Try experimenting with editable text. It works on the same prin-
ciples, and you simply send a WM_GETTEXT message to retrieve
what the user entered.

Static Link Libraries

Later when we create our online tutorial game, we will be using static
link libraries to encapsulate all our network and graphics code, which
makes it easier to reuse for future projects. As well as the reusability
factor, static link libraries also protect your source code while allowing
others to use the functionality of your code.

When creating a static link library, a WinMain function or a Win-
dows update function (WndProc) are not required. This is because we
are not actually creating a program but rather just a collection of func-
tions that we can use from within our programs. The library is created
using standard C/C++ source and header files, but the output is a
library rather than a Windows executable.

When you compile your library, the compiler will generate a library
file with the extension .lib. To use the functions in your library, you are
required to include it in your project and include the header file that

Chapter 1 / Introduction to Windows Programming 9

was used to create the library (which contains all the external variables,
types, and function prototypes).

The easiest way to use your library is to create Lib and Include
folders for your library and include those directories in the Visual Stu-
dio directory settings that are explained in the sections to follow.

Creating a Static Link Library

When creating a static link library, the best thing to do is to create a
directory structure on your hard drive for the library to be stored in.
From our experience, we recommend the structure shown in Figure
1-8.

� Examples — All example programs that display how to use your
library are stored in this folder. This is probably one of the most
useful things that can accompany your library since the source
code is not visible to any other programmer using it.

� Formats — This is where you store any file formats specific to
your static link library (i.e., your own 3D model format).

� Include — This stores the entire collection of C/C++ header files
that are needed to use your library. This one of the directories that
you must set up in Visual Studio to make your library work.

� Lib — This is where you actually store your complete library file.
It is a good idea to include both the release and debug versions of
your library here so that it is easier to debug programs created
with it. This is the other directory required by Visual Studio.

� Source — All source code related to your library must be kept in
this folder.

� Tools — Any programming tools that are used alongside your
library are stored here (such as file format converters).

Now that we have our structure, we need to create a static link library
project. This is done by selecting File, New… in Visual Studio. The fol-
lowing dialog is now visible.

10 Chapter 1 / Introduction to Windows Programming

Figure 1-8

Select the Win32 Static Library option and enter a name for your
library. Next, select the location and press the OK button.

In the dialog that appears, leave both the Pre-Compiled header and
MFC support options unchecked as we will not be using either in this
book, and then click Finish. A project information box is now visible;
simply click OK.

Next, we need to add our source and header files to the project as
you did when creating the window. Remember, this time we do not
require the WinMain or update procedure, just functions that we wish
to reuse. Let’s call the source file library.cpp and the header file
library.h for this example.

If you now press F7, it will build your library and put it in the
Release or Debug folder depending on your project configuration. The
library will have the same name as your project. For example, if your
project is named “GamePhysics” your library will be
“gamephysics.lib.”

It is a good idea to make Visual Studio automatically copy your
header file and library to the correct directories in your structure to
assure that you are always using the latest version. Selecting Project,
Settings from the main menu makes the following dialog visible.

Chapter 1 / Introduction to Windows Programming 11

Figure 1-9

Set the Output file name for your library and choose where you want it
to go relative to the directory your source files are in. This must be
done for both release and debug configurations. In the previous dialog
the Debug settings are currently active.

TIP It is a good idea to have both debug and release versions
of your library. Call your release version the correct name (i.e.,
“GamePhysics.lib”) and add a suffix to the debug version (i.e.,
“GamePhysicsDebug.lib”) to distinguish them easily.

Now the library file is created in the correct directory in our struc-
ture when the project is built. We also want to copy our header file to
the Include directory of our structure.

As can be seen in Figure 1-11, you simply add a post-build command
that tells the compiler to copy the header file(s) to the Include
directory.

12 Chapter 1 / Introduction to Windows Programming

Figure 1-10

We have now covered the basics on how to create a static link library.
The most important thing to remember is to prototype all functions and
extern all global variables you wish to be accessible outside of your
library. In the next section, we discuss how to set up Visual Studio to
find your library.

Using a Static Link Library

Once you have built your library and it is in the correct directories, you
need to tell Visual Studio where to look for it. Select Tools, Options…
from the main Visual Studio menu to open the Options dialog box.

If the Directories tab is unselected, select it now to display a list of
directories as shown in Figure 1-12. Only the top three should be visi-
ble unless you have previously added other static libraries.

Chapter 1 / Introduction to Windows Programming 13

Figure 1-11

Figure 1-12

You must now add the Include directory of your library for the Include
files and the Lib directory for the Library files. You select which one
you wish to add by changing the top-right drop-down box.

Now Visual Studio is able to find and recognize your static link
library. To use it in a program you have written, you must first load
your project into Visual Studio, then select Project, Settings…

Next, select the Link tab and add your library name before
“kernel32.lib.” Also, remember to include the header file for your
library in your main code.

Summary

This chapter discussed the basics to creating dialog-based applications
in Visual Studio. The best thing to do is experiment by creating dialogs,
adding buttons, and making the buttons set strings to different values
when you press them. Also, learn to use editable text as this is highly
useful and allows the user to give feedback to your program.

If you are interested in learning more, there are entire books written
on Windows programming and there is also an excellent resource avail-
able on the Internet (http://msdn.microsoft.com), but the quick
introduction provided here will give you enough knowledge to under-
stand the concepts used in this book.

TIP Windows 98 Programming from the Ground Up by Herbert
Schildt (ISBN: 0-07-882306-4) provides an excellent way of
understanding Windows programming.

14 Chapter 1 / Introduction to Windows Programming

Chapter 2

Using Databases

Introduction

This chapter covers how to create a stable and fast database system for
your game server.

Although it is possible to store player information on the player’s
local machine, it makes much more sense to store the data on the
server for many reasons. The most important reason is to prevent play-
ers from running “hacks” on their computers to change their character
data in the game or even back the data up to another file. If the data is
stored on the server, it makes it impossible for the player to run a local
game hack that will modify the character data. Another reason for this
is to allow players to play from different locations and machines without
having to copy their character data to another computer.

In this chapter, we cover how to install and use MySQL and then
look at how to access a database from within a C++ application (aka a
game).

What Is MySQL?

MySQL is an open source relational database management system. Its
purpose is to store and allow easy and fast access to data.

15

Installing MySQL

Installing MySQL is relatively painless. Firstly, you need the installa-
tion program for MySQL, which is available on the CD that
accompanies this book. Alternatively, you can download the latest
version from http://www.mysql.com.

NOTE If you choose to install MySQL in a folder other than the
default (C:\MYSQL) or you wish to start MySQL on NT/Win2000 as
a service, you need to create a file named MY.CNF in the root of
your C:\ drive with the following information in it (or append the
following information to either \Windows\my.ini or \winnt\my.ini,
depending on whether you are using Windows 98 or 2000/XP,
respectively):

[mysqld]
basedir=E:/installation-path/
datadir=E:/data-path/

After you have installed MySQL, the installation directory will con-
tain a file named my-example.cnf. You can use this as a template to
create your own my.cnf file.

When you start the installation, you will be asked which type of setup
you would prefer: Typical, Compact, or Custom. Here we select the
Typical option, as it will install all the components we require in order
to work with MySQL.

After selecting Typical, simply press the Next button to automatically
complete the installation process.

16 Chapter 2 / Using Databases

Figure 2-1
Selecting
the Typical
install
option

Now that we have MySQL installed, first we will browse the direc-
tory so we can see what it has installed for us. If we open up the
directory to which we installed MySQL to (typically c:\mysql), we can
see the following directory structure.

All we really have use for here is the bin directory, which contains the
MySQL server and client executables, and the docs directory, which
contains the HTML version of the MySQL manual.

NOTE An Adobe PDF version of the MySQL manual is supplied on
the companion CD. We find this easier to read, but you will also
require the free program Adobe Acrobat Reader to view this man-
ual, which is also on the CD and available to download at
http://www.adobe.com/products/acrobat/readermain.html.

Let’s now take a look in the bin directory and see what is of use to us
there. The contents can be seen in the following image.

Chapter 2 / Using Databases 17

Figure 2-2
The MySQL
directory
structure

As you can see, there are many executables in this directory; some are
daemons (i.e., the MySQL server) and some are console-based clients
for accessing the MySQL server.

NOTE A daemon is simply a program or process that sits idly in the
background until it is invoked to perform its task.

The executable mysql.exe is a console-based client, which is used to
interact with the MySQL server using the SQL language. We cover
SQL in great depth later in this chapter.

If we try to run the console client (mysql.exe) now, the following
screen will appear for a couple of seconds and then disappear.

Why? The reason the window appears and promptly disappears is
because there is currently no MySQL server to connect to — i.e., there
is no MySQL daemon running for the client to interact with.

18 Chapter 2 / Using Databases

Figure 2-3
The contents
of the bin
directory

Figure 2-4
A blank
window?!

So the obvious thing to do now is to run a MySQL server so we can
access it via the client. The best way to do this is to run the
winmysqladmin.exe file located in the bin directory. The first time this
is run it will ask for a username and password. This isn’t really impor-
tant for testing, so just enter something like admin for the username
and the password. After that, you will see a small traffic light icon
appear in your system tray with the green light indicating the MySQL
server is running. Note that MySQL will now automatically run every
time Windows is booted up.

SQL Statements

Now that we have the MySQL server running, it is time to load up the
MySQL console client. This is done the same way as we loaded it
before (i.e., run the mysql.exe executable that is located in the
c:\mysql\bin\ directory).

In SQL (structured query language), there are two types of state-
ments we can execute. These are DDL (data definition language) and
DML (data manipulation language). DDL is used to affect the structure
of the database, such as adding databases, tables, etc., whereas DML is
used to add and modify data in an existing database and retrieve infor-
mation. The following sections cover these statements.

Data Definition Language

First we take a look at DDL, as we require a database to work with
before we can manipulate any data within it.

Creating and Dropping Databases

First, let’s see what databases already exist in the MySQL server. We
can view this information by using the SHOW command. Enter the fol-
lowing (except the “mysql>” part) into the MySQL console client,
followed by a Return:

mysql> SHOW DATABASES;

When you press Return, the following should be visible in the console
display:

Chapter 2 / Using Databases 19

As you can see, there are two databases already created in the MySQL
server. The mysql database contains administration information for the
MySQL server and should not be modified. The other database, test, is
exactly what it is called — a test for the MySQL server. Again it is not a
good idea to remove it.

Creating a Database

So how do we add our own database to the MySQL server? By using
the CREATE command. To create a database called mydata, we would
use the following syntax.

mysql> CREATE DATABASE mydata;

Notice that the semicolon is added after every command in the SQL
language. When we press Return after entering this command, the con-
sole informs us that the query was okay. This can be seen in Figure 2-6.

NOTE The following length and character restrictions are imposed
on the names of databases, tables, columns, and aliases.

Table 2-1 Naming restrictions

Identifier Max Length Valid Characters

Database 64 All valid directory name
characters except “.” and “/”.

Table 64 All valid directory name
characters except “.” and “/”.

Column 64 All are valid

Alias 255 All are valid

20 Chapter 2 / Using Databases

Figure 2-5
Dialog box

Now that we have created the database, we can ensure it is on the
server by again using the SHOW command as follows:

mysql> SHOW DATABASES;

When we press Return after entering this command, we can see that
our database has been added to the list (note that the list is in alphabet-
ical order, not the order in which they were created).

Dropping a Database

Now we will remove a database from the server. Note that when we do
this all data (if any) will be lost. To remove a database, we “drop” it
from the server by using the DROP command. So to drop our new
mydata database we would use the following command:

mysql> DROP DATABASE mydata;

When we execute this command by pressing Return, the query will be
reported as OK, as shown in the following screenshot.

Let’s again list the databases using the SHOW command:

mysql> SHOW DATABASES;

Chapter 2 / Using Databases 21

Figure 2-7
The mydata
database
has been
added to
the list.

Figure 2-8
Dropping a
database

Figure 2-6
Creating a
database

Notice that our mydata database is no longer visible in the list.

Column (Field) Types in MySQL

Before we discuss the creation of tables within databases, now is a good
time to discuss the different column types we can have in tables.

Each column in a table must be assigned a type that represents the
kind of information that field is going to hold. Table 2-2 lists the avail-
able types you can use.

Table 2-2 MySQL column types

Type Description

TINYINT A very small integer. Signed range is –128 to 127. Unsigned
range is 0 to 255.

SMALLINT A small integer. Signed range is –32768 to 32767. Unsigned
range is 0 to 65535.

MEDIUMINT A medium-sized integer. Signed range is –8388608 to
8388607. Unsigned range is 0 to 16777215.

INT A normal-sized integer. Signed range is –2147483648 to
2147483647. Unsigned range is 0 to 4294967295.

BIGINT A large integer. Signed range is –9223372036854775808 to
9223372036854775807. Unsigned range is 0 to
18446744073709551615.

FLOAT A small, single-precision floating-point number that cannot be
unsigned. Signed range is –3.402823466E+38 to
–1.175494351E–38, 0, and 1.175494351E–38 to
3.402823466E+38.

DOUBLE A double-precision floating-point number that cannot be
unsigned. Signed range is –1.7976931348623157E+308
to –2.2250738585072014E–308, 0, and
2.2250738585072014E–308 to
1.7976931348623157E+308.

22 Chapter 2 / Using Databases

Figure 2-9
Database
listing after
the DROP
command

Type Description

DECIMAL An unpacked floating-point number that cannot be unsigned.
Works like a char column in that the number is stored as a
string (i.e., each number uses one character in the string).

DATE A date. Range is 1000-01-01 to 9999-12-31 and is in the
format YYYY-MM-DD.

TIME A time. Range is –838:59:59 to 838:59:59 and is in the
format HH:MM:SS.

DATETIME A combination of date and time. Range is 1000-01-01
00:00:00 to 9999-12-31 23:59:59 and is in the format
YYYY-MM-DD HH:MM:SS.

YEAR[(2|4)] A year in two- or four-digit format (default is four-digit). Range
is 1901 to 2155 and also 0000.

TIMESTAMP A timestamp. Range is 1970-01-01 00:00:00 to sometime in
the year 2037 in the format of YYYYMMDDHHMMSS.

CHAR(length) A fixed-length string that is always right-padded with spaces to
the specified length when stored. The range is 1 to 255
characters depending on the length specified.

VARCHAR A variable-length string.

TINYBLOB/
TINYTEXT

A tiny binary object with a maximum length of 255 characters.
*See Note below table.

BLOB/TEXT A binary object with a maximum length of 65,535 characters.
*See Note below table.

MEDIUMBLOB/
MEDIUMTEXT

A medium binary object with a maximum length of
16,777,215 characters. *See Note below table.

LONGBLOB/
LONGTEXT

A large binary object with a maximum length of 429,496,295
characters. *See Note below table.

ENUM('val1','val2'...) An enumeration. A list of string values of which only one can
be selected. Maximum of 65,535 distinct values.

SET('val1','val2'...) A set. A string object that can have zero or more values, each
of which must be chosen from the list (i.e., 'val1', 'val2', etc.).
Maximum of 64 members.

NOTE The only difference between the BLOB and TEXT types is that
for sorting and comparisons, a BLOB is case sensitive whereas the
TEXT type is not.

Chapter 2 / Using Databases 23

Adding, Modifying, and Dropping Tables

The following sections discuss how to manipulate tables in databases.

Creating Tables

Now that we know the possible types for the columns in our tables,
let’s look at how we actually go about creating a table.

Let’s say we wish to create a table to hold some user details within a
database. In fact, we will be using a similar table later in the tutorial
section. We want to store the user’s title, first name, last name, age,
email address, and the date they were added to the database. This will
require the following columns:

Title
Firstname
Surname
Age
Email
DateAdded

Before we get into how to actually add the information, let’s first think
about how we are going to store it. Or, more to the point, what types
we require for each of the columns.

For the title, firstname, and surname, we can use the TEXT type as
it contains plenty of characters to allow for all possibilities. For age, an
unsigned TINYINT would be an obvious choice as these are numerical
and no one has ever been known to live past 255. For email address, we
can again use a TEXT type, as it will give us substantial storage space
for the address. And finally, for the date that the user was added to the
table, we can use a TIMESTAMP. This is very useful in that the time
and date can be retrieved automatically into the database; this is dis-
cussed later in the chapter.

So now that we know what types we want for our columns, we first
need to create a database to add the table into. This goes back to what
we learned in the previous section. Let’s create a database called
myinfo with the following command:

mysql> CREATE DATABASE myinfo;

When we execute this command, the console should report that the
query was okay. We can now check that our database has been created
by using the following command:

mysql> SHOW DATABASES;

24 Chapter 2 / Using Databases

When we execute this command, the following should be visible in the
console:

Now we need to tell MySQL that we wish to perform actions on the
myinfo database. This is accomplished by using the USE command:

mysql> USE myinfo;

After executing this command, any DDL (data definition language) and
DML (data manipulation language) statements that are executed will
affect the database in use, which in this case is our myinfo database.

With the database set up and ready to accept commands, we can cre-
ate our table (which we will call userinfo) with the following statement:

mysql> CREATE TABLE userinfo (
-> id INT auto_increment,
-> title TEXT,
-> firstname TEXT,
-> surname TEXT,
-> age TINYINT,
-> email TEXT,
-> dateadded TIMESTAMP,
-> PRIMARY KEY(id));

Let’s break this up a little so we can see what is going on. First, we
declare that we wish to create a table by entering CREATE TABLE.
Next we specify the name we wish to call the table, in this case
userinfo. Then within parentheses we list all of the column names and
types we require. Note how we have added an extra field named id.
This makes it easier to handle data in a relational way, as we discuss
later in this chapter. Finally, note the addition of the primary key as the
last parameter. This is used to determine how the table is optimized
within the database. Again, we discuss the use of keys later in this
chapter.

We can now see if our table was created successfully by executing
the following command:

mysql> SHOW TABLES;

Chapter 2 / Using Databases 25

Figure 2-10
The myinfo
database is
now visible in
the console
after using the
SHOW
DATABASES
command.

When this is executed, the following output should be visible in the
console:

Note that you can also view the columns in a table by using the follow-
ing command:

mysql> DESCRIBE userinfo;

When you execute this command, the console will display all the details
for each of the columns in the userinfo table, as shown in Figure 2-12.

This information can be useful to ensure the table was created as you
envisioned and to recap the columns a table contains at a later date.

Modifying Tables

Now let’s see how to modify a table. Modifying a table can range from
simply changing the type of one of the columns to adding a complete
new column or removing an existing column.

Let’s first look at how we can change the name of an existing col-
umn. In our userinfo table we have a column called firstname, but let’s
now change this to read forename instead.

To make this change we need to use the following syntax:

mysql> ALTER TABLE userinfo CHANGE firstname forename TEXT;

Note how we also must supply the data type for the column as well as
its old and new names. Here is how this should look in the MySQL con-
sole client:

26 Chapter 2 / Using Databases

Figure 2-11
Here the
userinfo table
can be seen as
part of our
database.

Figure 2-12
Describing
the userinfo
table

If we now describe the userinfo table with the following command:

mysql> DESCRIBE userinfo;

we can see that the firstname column has been renamed to forename:

We can also change the data types of columns in tables. To change the
age column from a TINYINT to an INT, we would use the following
command:

mysql> ALTER TABLE userinfo MODIFY age INT;

After executing this command and then using the DESCRIBE com-
mand on this table, we can see the type has changed to INT.

Finally, it is good to know how to remove fields from a table when they
are no longer required. Let’s say we no longer require the email field in
our userinfo table. What we want to do is drop the field from our table,

Chapter 2 / Using Databases 27

Figure 2-13
Modifying a
column name

Figure 2-14
Description of
the updated
userinfo table

Figure 2-15
Now the age
column is of
type INT
rather than
TINYINT.

just as we did earlier in the chapter when we dropped the database.
Here is the syntax for removing the email field:

mysql> ALTER TABLE userinfo DROP email;

Here is how this looks in the MySQL console:

Once this command is executed, if we describe the table with the fol-
lowing command:

mysql> DESCRIBE userinfo;

we can see that the email field has been removed from our userinfo
table.

Dropping (Removing) Tables

Removing tables from a database is very simple, but without careful use
can have disastrous effects. The main thing to note when you drop a
table is that you also lose all the data contained within the table. There-
fore, it is always wise to back up a database before executing any drop
commands. We will look at backing up a database later in this chapter.

Let’s now look at how we drop the userinfo table from our myinfo
database. To do this, we need to execute the following command in the
MySQL console client:

mysql> DROP TABLE userinfo;

28 Chapter 2 / Using Databases

Figure 2-16
Dropping a
field from a
table

Figure 2-17
As you can
see, the email
field has now
been
removed.

Once this command is executed, we can verify that the table has been
removed by using the SHOW command to see what tables are currently
in our myinfo database:

mysql> SHOW TABLES;

As you can see from Figure 2-18, the table no longer exists in the
database.

Data Manipulation Language (DML)

In this section, we look at how to add, modify, and remove data from
tables in the database using DML (data manipulation language). With-
out this knowledge, we would not really have any use for a database; it
would simply be a static entity with no purpose.

Let’s first create a database and table to work with in this section,
using the DDL we learned in the previous section. Our database will be
called dmlexample, so let’s create that with the following statement:

mysql> CREATE DATABASE dmlexample;

We then need to specify that we wish to use the new database by exe-
cuting the following statement:

mysql> USE dmlexample;

The console should now inform us that the database has changed, as
seen in Figure 2-19.

Chapter 2 / Using Databases 29

Figure 2-18
After drop-
ping the
userinfo table,
we have an
empty data-
base.

Figure 2-19
Creating the
dmlexample
database

Now we need to create a table called sampletable. This table will con-
tain the following fields:

Username
Password
Age
Email
DateCreated

This is accomplished using the knowledge we learned in the section on
DDL statements. First we need to specify that we wish to use the
dmlexample database with the following command:

mysql> USE dmlexample;

Once this is done, we can create our table with the following DDL
statement:

mysql> CREATE TABLE sampletable (
-> username TEXT,
-> password TEXT,
-> age INT,
-> email TEXT,
-> datecreated TIMESTAMP);

Figure 2-20 shows how this should look in the MySQL console client:

Inserting Data

To add rows to the table, we use the INSERT command. Here is how
we would add a single row to our sampletable:

mysql> INSERT INTO sampletable VALUES (‘andrew’, ‘qwerty’, 20,
‘andrew@huntedcow.com’, NULL);

Figure 2-21 shows how this looks when we enter it into the MySQL
console. Notice how the feedback from the console tells us that one
row has been affected. This means we have added one row to our
sampletable table.

30 Chapter 2 / Using Databases

Figure 2-20
Creating our
sample table

We can then use the SELECT command to view the data in the table.
We go into more detail about this command later in this chapter as it is
very important, but for now we just use it without further explanation.
Let’s use SELECT to see what data is in our dmlexample table:

mysql> SELECT * FROM sampletable;

When we execute this statement, the following will be visible in the
MySQL console:

NOTE Notice how the datecreated field reflects the time and date
when we added the row to the table. This is because we specified
NULL when we added the row; doing this will make a TIMESTAMP

field grab the current date and time from the system by default.

It is also possible to add several rows of data in a single command. Let’s
try this now by adding another three rows to our table in a single
INSERT command, as shown below:

mysql> INSERT INTO sampletable VALUES
-> ('teijo', 'mrt', 21, 'teijo@kanetti.fi', NULL),
-> ('jim', 'letmein', 23, 'jim@email.net', NULL),
-> ('wes', 'opensesame', 31, 'wes@email.net', NULL);

Chapter 2 / Using Databases 31

Figure 2-21
Inserting a
single row of
data

Figure 2-22
Viewing the
new row in
the table

When we execute this command, the following can be seen in the
MySQL console client:

As you can see, this time the feedback from the console indicates that
three rows have been affected; thus, we have added three rows to our
table. We can verify this by again using the SELECT command:

mysql> SELECT * FROM sampletable;

When this is executed, you will see that the table contains four rows (or
records, if you like) of information. Figure 2-24 shows the MySQL con-
sole after the SELECT statement has been executed.

Modifying Data

To modify existing data in a table we use the UPDATE command. First
let’s try to change all the passwords in all the rows in the table to
changeme. This can be accomplished with the following statement:

mysql> UPDATE sampletable SET password = ‘changeme’;

When we execute this statement, the console will inform us that four
rows have been affected as we have changed the password for every row
in that table. We can see the effect on the table by using the SELECT
command as follows:

myql> SELECT * FROM sampletable;

32 Chapter 2 / Using Databases

Figure 2-23
Inserting
multiple rows
in a single
statement

Figure 2-24
Now we have
four rows in
the table.

Here is a screenshot of this command being executed in the console:

But what if you only want to update a single row? Let’s say we wish to
change the password for Teijo from changeme back to mrt. We would
use the following statement to do this:

mysql> UPDATE sampletable SET password = ‘mrt’ WHERE username = ‘teijo’;

When we execute this command in the console, it informs us that one
row has been affected. This is because it will only update the password
field if the username field is equal to teijo. If we use the SELECT com-
mand on the table now, we can see that only Teijo’s password has
changed, as shown in Figure 2-26.

We can also use this technique to update only certain fields. For exam-
ple, we could change all the passwords of the people who are 30 years
old or younger. Here is the command to do this:

mysql> UPDATE sampletable SET password = ‘young’ WHERE age <= 30;

When we execute this command, it will inform us that three rows have
been affected, as three of the four records in our table have an age field
that is 30 or less. If we then use the SELECT command we can see the
following output in the console:

Chapter 2 / Using Databases 33

Figure 2-25
The password
field has been
updated in all
of the rows.

Figure 2-26
Updating only
a single row

TIP A useful idea is to update a TIMESTAMP field with NULL. This
will retrieve the latest time from the system the database is running
on. A practical use would be to note the last time a player logged
in.

Removing (Deleting) Data

Removing data from a table is done very similarly to updating data.
Let’s look at how to delete a single row of data from the database using
the following statement:

mysql> DELETE FROM sampletable WHERE username = ‘teijo’;

When we execute this command, the MySQL console client will inform
us that one row was affected. If we now use the SELECT command on
the table, the following can be seen in the console:

Again, as with the update statements, we can specify conditions to
allow us to delete, for example, everyone who is younger than 30. Let’s
do this now with the following statement:

mysql> DELETE FROM sampletable WHERE age < 30;

34 Chapter 2 / Using Databases

Figure 2-27
Conditional
updates

Figure 2-28
Deleting a
single row

When we execute this statement, the client will inform us that two
rows have been affected, or in this case deleted. If we now use the
SELECT command on our table, we will see that only one row is left in
the table.

Finally, it is also possible to delete all the rows from a table in a single
statement. All we need to do for this is not specify any condition, as we
did when we updated all the password fields to changeme earlier. Here
is the statement we require to delete all the rows in a table (i.e., empty
the table):

mysql> DELETE FROM sampletable;

After executing this, if we select all the information in the table using
the SELECT command, the following will be shown in the console:

As you can see in Figure 2-30, the table now contains no information as
it has all been deleted.

Using SELECT Statements

So far we have simply used the following command to show all the data
in our sampletable table:

mysql> SELECT * FROM sampletable;

Chapter 2 / Using Databases 35

Figure 2-29
Conditional
deleting

Figure 2-30
Deleting all
the data from
a table

What this actually does is it fetches all the fields from the sampletable
and returns them. The * is a wildcard which basically means it repre-
sents anything (or in this case, any field).

Before we discuss the SELECT statement further, let’s add some
data to experiment with to our sampletable table. Use the following
statement to insert some data:

mysql> INSERT INTO sampletable VALUES
-> ('andrew', 'qwerty', 21, 'andrew@huntedcow.com’, NULL),
-> ('andrew', 'letmein', 27, 'andrew@email.net', NULL),
-> ('george', 'paper', 19, 'george@email.net', NULL),
-> ('jenny', 'jen999', 27, 'jen@email.net', NULL),
-> ('sandra', 'sdra2', 27, 'sandra@email.net', NULL);

Figure 2-31 shows how this should look when we enter it into the con-
sole and execute it.

Now that we have added our data into the table, if we use the SELECT
statement with the wildcard (*) as we were doing before, it will retrieve
and display all of the information from the table to the console. Let’s try
this with the following statement:

mysql> SELECT * FROM sampletable;

Here is a screenshot of the output from the console:

36 Chapter 2 / Using Databases

Figure 2-31
Inserting our
new data
into the
sampletable
table

Figure 2-32
Using the
wildcard with
a SELECT
statement

As you can see, the statement has retrieved all of the information from
the table, that is, all of the rows, and all of the columns contained in
each of the rows.

Let’s say all we want to retrieve is the password field. To get all of
the passwords from the sampletable table, we would use this
statement:

mysql> SELECT password FROM sampletable;

When we execute this statement, we can expect the following output
from the console:

Notice how we simply replace the wildcard (*) with the column we
wish to retrieve. We can also retrieve multiple columns by using a
comma to delimit them. To select both the username column and pass-
word column only, use this statement:

mysql> SELECT username, password FROM sampletable;

When we execute this statement, we can see in the console that only
the username and password fields have been selected from the table, as
shown in Figure 2-34.

We know how to retrieve individual fields from the tables, but how do
we retrieve a single row? We can easily apply a condition to a SELECT
statement, just as we did when we were updating the table and deleting

Chapter 2 / Using Databases 37

Figure 2-33
Retrieving
only a single
column

Figure 2-34
Retrieving
multiple col-
umns

from the table. Using a conditional SELECT statement, let’s only dis-
play Jenny’s information from the database. Here is the statement to do
this:

mysql> SELECT * FROM sampletable WHERE username = ‘jenny’;

When we execute this statement, only Jenny’s details will be displayed
in the MySQL client console, as shown in Figure 2-35.

We can also select specified fields, such as finding the password that
related to a username. Here is how we would retrieve the password
that belongs to George:

mysql> SELECT password FROM sampletable WHERE username = ‘george’;

When we execute this statement, we can see that only a single field is
displayed — George’s password, as shown in Figure 2-36.

In our sample data, there are two rows with the username andrew. If
we use a conditional statement to get the password for Andrew, we will
in fact get two passwords, one for each andrew entry in the database.
Here is the statement that will give us that result:

mysql> SELECT password FROM sampletable WHERE username = ‘andrew’;

When we execute this statement, we can see that we have two pass-
words showing in the console. Here is a screenshot of this result:

38 Chapter 2 / Using Databases

Figure 2-35
Selecting a
single row

Figure 2-36
Selecting a
single row
with specified
columns

Later in this chapter we discuss a way around this problem with the
use of relational databases and keys, but let’s not go into that just yet.

Instead, let’s have a look at how the LIKE command can help us find
needed information. Using LIKE is ideal for finding strings in data-
bases, especially if you only have a part of the complete string (i.e., for
a search engine). For example, let’s say we wish to find someone in the
database who has a name starting with the letter “J.” To accomplish
this, we would use the following statement:

mysql> SELECT * FROM sampletable WHERE username LIKE ‘j%’;

When we execute this statement, we can expect the following output
from the MySQL console:

Notice here how Jenny was retrieved, as her username is the only one
to start with a “J.” The % represents a wildcard when used with LIKE,
so if we used the following statement instead:

mysql> SELECT * FROM sampletable WHERE username LIKE ‘%j%’;

it would mean that the letter “J” could appear anywhere in the string.
Also note that you can have more than a single character, such as:

mysql> SELECT * FROM sampletable WHERE username LIKE ‘%nny’;

This would retrieve all of the people who have names that end with the
text “nny.”

Chapter 2 / Using Databases 39

Figure 2-37
The two-
password
problem!

Figure 2-38
Using LIKE
with a SELECT
statement

Relational Databases

We have been looking mainly at how to create database structures and
do simple data manipulation within them. However, there are a lot of
ideas and theories that make databases even more useful to us.

Let’s now look at what sort of structure we would want for a rela-
tional database. Think of a database that related players in a game to
one another, for example to determine who was a friend of each player
and, conversely, who was an enemy of each player.

Let’s first create a table to store the data for each of the players,
with the addition of a primary key, which optimizes the database for
searches on that particular column. Note also that every row of data in
the primary key must be unique to one another. Here is the statement
required to create our gamedata database and our playerdata table:

mysql> CREATE DATABASE gamedata;

mysql> USE gamedata;

mysql> CREATE TABLE playerdata (
-> username CHAR(255) UNIQUE NOT NULL,
-> password CHAR(255),
-> age INT,
-> datecreated TIMESTAMP,
-> PRIMARY KEY(username));

Notice here how we set the username column to be UNIQUE and also
NOT NULL. In simple terms, this means that it must contain a value
and that value must not be the same as any other username in any
other record in the table. Note also that we have set the primary key of
the table to be the username field, as we will be mainly searching on
this field.

Additionally, we need some way of storing a player’s friends and ene-
mies. This is done by means of a link table. A link table is really just a
normal database table, but its main purpose is to relate data in some
way or another to conserve space and also optimize the way the data-
base accesses the information.

To create two link tables, one for relating friends and one for relating
enemies to each other, use these statements:

mysql> CREATE TABLE relatefriends (
-> player CHAR(255),
-> friend CHAR(255));

And also…

mysql> CREATE TABLE relateenemies (
-> player CHAR(255),
-> enemy CHAR(255));

40 Chapter 2 / Using Databases

If we show the tables in the database with the following command:

mysql> SHOW TABLES;

we can see from Figure 2-39 that our database now contains three dif-
ferent tables, our playerdata table and the two link tables.

Let’s add some sample data to the playerdata table so we can experi-
ment with the link tables and understand how to use them effectively.
Here is the statement to add our sample data into the playerdata table:

mysql> INSERT INTO playerdata VALUES
-> ('Andrew', 'qwerty', 20, NULL),
-> ('Henry', 'letmein', 34, NULL),
-> ('Sandra', 'dra33', 19, NULL),
-> ('John', 'j12d', 23, NULL),
-> ('Jenny', 'jen123', 34, NULL);

If we select all the information from the playerdata table now using the
following command:

mysql> SELECT * FROM playerdata

we can see in Figure 2-40 that all of our data is now in the playerdata
table.

Chapter 2 / Using Databases 41

Figure 2-39
Our three
tables in the
gamedata
database

Figure 2-40
Our data in
the playerdata
table

Now that we have some sample data, let’s create some relations
between the players in the database. First, add to the relatefriends link
table the fact that Henry is friends with Sandra. Here is the statement
required to add this to the link table:

mysql> INSERT INTO relatefriends VALUES
-> ('Henry', 'Sandra');

If we now show all of the data from the relatefriends link table, the fol-
lowing will be visible in the MySQL console:

Let’s add some more sample data into both the relatefriends and
relateenemies link tables and then see how we can manipulate the data.
Here are the two statements required to add the sample data:

mysql> INSERT INTO relatefriends VALUES
-> ('Andrew', 'Henry'),
-> ('Andrew', 'John'),
-> ('Andrew', 'Jenny'),
-> ('Sandra', 'Jenny');

and also…

mysql> INSERT INTO relateenemies VALUES
-> ('Andrew', 'Sandra'),
-> ('Henry', 'Jenny'),
-> ('Henry', 'John');

Let’s see if we can find out who Andrew is friends with by using the fol-
lowing statement:

mysql> SELECT friend FROM relatefriends WHERE player = ‘Andrew’;

When we execute this statement, the console displays a list of all of the
players with which Andrew is friends, as shown in Figure 2-42.

42 Chapter 2 / Using Databases

Figure 2-41
Our data in
the friends
table

When we start implementing databases into Java in the next chapter,
we could use this data to find out more information about each of
Andrew’s friends.

Again, we can do exactly the same with the relateenemies link table.
For example, we could find out all of Henry’s enemies with the follow-
ing statement:

mysql> SELECT enemy FROM relateenemies WHERE player = ‘Henry’

When we execute this statement, the following console output can be
expected:

If we then wanted to find out more information about Henry’s enemy
who has a username of Jenny, we would use the following statement:

mysql> SELECT * FROM playerdata WHERE username = ‘Jenny’;

Here is a screenshot of our expected console output:

Chapter 2 / Using Databases 43

Figure 2-42
Finding out a
player’s friend
list

Figure 2-43
Finding out a
player’s
enemy list

Figure 2-44
Finding more
data about an
enemy

Data Import Methods

Here we learn how to import data into our tables.

Importing from a Text File

Let’s now create a text file that contains several records to be added to
our playerdata table. We do this simply by denoting each column with a
tab and each row by a new line. Figure 2-45 shows five lines of data to
be added to the database in Windows Notepad:

Note how we use \N to specify a field that contains NULL and also that
an extra tab is required after each row of data to signify the end of that
row. We have saved this file in the MySQL bin directory (i.e.,
c:\mysql\bin) with the filename import.txt.

Now go to the MySQL console client and enter the following:

mysql> LOAD DATA LOCAL INFILE 'import.txt' INTO TABLE playerdata;

The console will inform us that five rows have been affected, or in this
case added to our database. This can be seen in the following
screenshot of the console.

44 Chapter 2 / Using Databases

Figure 2-45
The data to
import in
Windows
Notepad

Figure 2-46
Importing
data from a
text file

If we now select all the information from the playerdata table, we can
see that our five rows of data have been imported correctly into the
database. Here is a screenshot of the client that shows our imported
data in the table.

Importing from a Native Source

Another method for importing data is using the Microsoft Excel spread-
sheet program or basically any other application that can export data as
tab-delimited data.

For this example, however, we will use Microsoft Excel. Let’s now
enter another five rows of data we wish to add to our playerdata table
into Excel. Once this is done, it should look roughly the same as Figure
2-48.

Chapter 2 / Using Databases 45

Figure 2-47
The imported
data in our
playerdata
table

Figure 2-48
Entering the
data into
Microsoft Excel

Once our data is entered, we need to save it in a format MySQL can
understand. In this case we will use tab-delimited values and save them
in a text file called excel.txt in the MySQL bin directory.

Now the process is the same as importing a text file as we did in the
last section. In fact, if you open up the text file in Windows Notepad you
will see the file format is identical to what we created in the previous
section. Figure 2-50 shows how the file looks when we open it up in
Notepad.

46 Chapter 2 / Using Databases

Figure 2-49
Saving as a
tab-delimited
text file

Figure 2-50
The excel.txt
file in Note-
pad

Backing Up and Restoring Data

Let’s turn our attention to how we can export and import a database in
MySQL. This is a relatively simple process but is extremely important
for backing up data.

Backing up a Database to a File

When we back up a database from MySQL, it is written to a text file and
is simply a list of the SQL statements that are required to recreate the
database.

Let’s export the gamedata database that we created earlier to a text
file called gamedata.txt. First we need to open up a command line by
clicking Run on the Start button in Windows. When the Run dialog
appears, type in command and press the OK button.

NOTE On Window 2000/XP, instead of typing in command, you
need to type in cmd.

A command-line window will appear. Next you need to go to the bin
directory of MySQL using the following command:

cd C:\mysql\bin

Note that you may have to change the above line if you modified the
default MySQL installation directory.

Figure 2-51 shows how this should look.

Now that we are in the correct directory, we will use a utility called
mysqldump, which exports a specified database to a file of our choice.
Here is how we would export our gamedata database to a text file called
gamedata.txt:

mysqldump gamedata > gamedata.txt

If we open up the text file (which is now located the mysql\bin\ direc-
tory), we can see that it contains many SQL statements and comments
added by the mysqldump utility. Here is a listing of our exported data-
base text file:

MySQL dump 8.16
#

Chapter 2 / Using Databases 47

Figure 2-51
The com-
mand-line
window
(MS-DOS)

Host: localhost Database: gamedata
#--
Server version 3.23.47

#
Table structure for table 'playerdata'
#

CREATE TABLE playerdata (
username char(255) NOT NULL default '',
password char(255) default NULL,
age int(11) default NULL,
datecreated timestamp(14) NOT NULL,
PRIMARY KEY (username),
UNIQUE KEY username (username)

) TYPE=MyISAM;

#
Dumping data for table 'playerdata'
#

INSERT INTO playerdata VALUES ('Andrew','qwerty',20,20020209203741);
INSERT INTO playerdata VALUES ('Henry','letmein',34,20020209203741);
INSERT INTO playerdata VALUES ('Sandra','dra33',19,20020209203741);
INSERT INTO playerdata VALUES ('John','j12d',23,20020209203741);
INSERT INTO playerdata VALUES ('Jenny','jen123',34,20020209203741);

#
Table structure for table 'relateenemies'
#

CREATE TABLE relateenemies (
player char(255) default NULL,
enemy char(255) default NULL

) TYPE=MyISAM;

#
Dumping data for table 'relateenemies'
#

INSERT INTO relateenemies VALUES ('Andrew','Sandra');
INSERT INTO relateenemies VALUES ('Henry','Jenny');
INSERT INTO relateenemies VALUES ('Henry','John');

#
Table structure for table 'relatefriends'
#

CREATE TABLE relatefriends (
player char(255) default NULL,
friend char(255) default NULL

) TYPE=MyISAM;

#

48 Chapter 2 / Using Databases

Dumping data for table 'relatefriends'
#

INSERT INTO relatefriends VALUES ('Henry','Sandra');
INSERT INTO relatefriends VALUES ('Andrew','Henry');
INSERT INTO relatefriends VALUES ('Andrew','John');
INSERT INTO relatefriends VALUES ('Andrew','Jenny');
INSERT INTO relatefriends VALUES ('Sandra','Jenny');

Restoring a Backed-Up Database

Now it’s time to look at how we would go about restoring a database
that has been backed up. First, let’s drop our gamedata database from
MySQL using the following statement:

mysql> DROP DATABASE gamedata;

Now that our gamedata database has been removed, we need to create
a new, empty database to import our data into. So let’s do this with the
following statement:

mysql> CREATE DATABASE newgamedata;

Next, we need to open up a command-line window again (by using the
Run dialog and entering command or cmd). Change to the mysql\bin\
directory as we did previously when we were exporting the data and
then type in the following command to import the data from our
gamedata.txt text file into our newgamedata database:

mysql newgamedata < gamedata.txt

Figure 2-52 shows a screenshot of the command-line window:

Chapter 2 / Using Databases 49

Figure 2-52
Importing a
text file into
MySQL

MySQL C++ Interface

The C++ interface for MySQL, MySQL++, gives the database sys-
tem a practical use from a game developer’s point of view. It allows us
to access a MySQL database via the IP address in which the database is
stored. This means we can easily retrieve and update data from our
database directly within our server applications.

First, you need to copy the MySQL++ libraries. They are on the
companion CD in a file called mysql++-1.7.1-win32-vc++.zip. Extract
the libraries with a utility such as WinZip (a trial version is available on
the CD and at http://www.winzip.com). You must then include the lib
and include directories in Visual Studio 6.

In addition, you must include the lib and include directories from the
MySQL directory. Setting up and using static libraries (such as
MySQL++) is explained in detail in Chapter 1. Once the library has
been set up, we can use it to write an application to retrieve data from a
database that is stored in MySQL.

Let’s create a simple console application so we can understand the
basics of how to access, retrieve, and update information in a database
from a C++ application.

Remember to include the mysql++.lib in your project settings (see
Chapter 1 for more detail on how to do this). You must also copy the
libmySQL.dll from the MySQL++ libraries example directory into
your applications directory (or the windows/system directory) in order
for your application to execute correctly.

Example 1 — Connecting and Retrieving Data
from MySQL

Here is the C++ code we require to create a connection to our
gamedata database and list all the information from our playerdata table.
After the code listing, each segment of the code is explained.

#include <iostream>
#include <iomanip>
#include <mysql++>

int main(void)
{

// -> Create a connection to the database
Connection con("gamedata","127.0.0.1");

// -> Create a query object that is bound to our connection
Query query = con.query();

// -> Assign the query to that object

50 Chapter 2 / Using Databases

query << "SELECT * FROM playerdata";

// -> Store the results from the query
Result res = query.store();

// -> Display the results to the console

// -> Show the field headings
cout.setf(ios::left);
cout << setw(10) << "username"

<< setw(10) << "password"
<< setw(10) << "age" << endl;

Result::iterator i;
Row row;
// The Result class has a read-only random access iterator
for (i = res.begin(); i != res.end(); i++)
{

row = *i;
cout << setw(10) << row["username"]

<< setw(10) << row["password"]
<< setw(10) << row["age"] << endl;

}

return 1;
}

In the code, we first create a connection to the server on which the
database is stored. We use the following code segment to achieve this:

Connection con("gamedata","127.0.0.1");

Connection is simply a class whose constructor takes in the parameters
to establish a connection to a MySQL database. The first parameter is
the name of the database you wish to connect to. The second is the IP
address of the server the database is located on. Notice here that the IP
address is 127.0.0.1; this is a special IP address that represents the
local machine, i.e., the machine that the C++ application is running on.

Next, we create a query object to allow us to pass queries into the
connection we have established with the database. This is done with
the following code segment:

Query query = con.query();

We can now use any standard MySQL query that we have used in the
MySQL console with this query variable. We process a query using the
following code:

query << "SELECT * FROM playerdata";

This code does the same as selecting all the information in the
playerdata table in the MySQL console.

Chapter 2 / Using Databases 51

Next, we store the results from the query in a Result class, which
contains a random access iterator for cycling through all the records of
data that the query returned. Here is how we assign the query results
into the Result class:

Result res = query.store();

Next, we print the field headings to the screen. This is not essential,
but it makes the output data easier to understand.

Now that we have the results in the Result class, we can use the
iterator to cycle through all the records that the query returned. We
declare the iterator as i in this code:

Result::iterator i;

Then we also want to create a Row class, which will hold each record of
data as we cycle through the records with the iterator. We create the
Row class as follows:

Row row;

Finally, we cycle through the data, outputting each record to the screen
on a new line. We declare which field we wish to print from the current
result by accessing the correct part of the Row class as follows:

row["fieldname"];

Here is the code we use to cycle through each record contained in the
Result class:

for (i = res.begin(); i != res.end(); i++)
{

row = *i;
}

Each time through the loop, the current record is assigned to the Row
class so we can access individual fields from each record. Therefore, we
can print each record using the following code within the for loop:

for (i = res.begin(); i != res.end(); i++)
{

row = *i;
cout << setw(10) << row["username"]

<< setw(10) << row["password"]
<< setw(10) << row["age"] << endl;

}

Here is the expected output from our C++ application:

52 Chapter 2 / Using Databases

Example 2 — Updating Data in MySQL from an
Application

In this example, we will modify a field of data from our playerdata table
in the gamedata database. First we will display the field, then change
the value, and display the field again so we can check that the data has
been updated.

We are going to change the password of the player with the user-
name Katy. Here is the code for the C++ console application we
require to do this. After the code, we explain how it works.

#include <iostream>
#include <iomanip>
#include <mysql++>

int main(void)
{

// -> Create a connection to the database
Connection con("gamedata","127.0.0.1");

// -> Create a query object that is bound to our connection
Query query = con.query();

//// DISPLAY BEFORE UPDATE

// -> Assign the query to that object
query << "SELECT * FROM playerdata WHERE username = 'Katy'";

// -> Store the results from the query
Result res = query.store();

// -> Display the results to the console

cout << "Before Update" << endl;
cout << "-------------" << endl;

Chapter 2 / Using Databases 53

Figure 2-53

// -> Show the field headings
cout.setf(ios::left);
cout << setw(10) << "username"

<< setw(10) << "password"
<< setw(10) << "age" << endl;

Result::iterator i;
Row row;
// The Result class has a read-only random access iterator
for (i = res.begin(); i != res.end(); i++)
{

row = *i;
cout << setw(10) << row["username"]

<< setw(10) << row["password"]
<< setw(10) << row["age"] << endl;

}

//// UPDATE THE INFORMATION

// Send an execute and update query in MySQL
query << "UPDATE playerdata SET password = 'qwerty' WHERE

username = 'Katy'";
query.execute();

//// DISPLAY AFTER UPDATE

// -> Assign the query to that object
query << "SELECT * FROM playerdata WHERE username = 'Katy'";

// -> Store the results from the query
res = query.store();

// -> Display the results to the console

cout << "Before Update" << endl;
cout << "-------------" << endl;
// -> Show the field headings
cout.setf(ios::left);
cout << setw(10) << "username"

<< setw(10) << "password"
<< setw(10) << "age" << endl;

// The Result class has a read-only random access iterator
for (i = res.begin(); i != res.end(); i++)
{

row = *i;
cout << setw(10) << row["username"]

<< setw(10) << row["password"]
<< setw(10) << row["age"] << endl;

}

return 1;
}

54 Chapter 2 / Using Databases

The only major difference between this code and the code in Example 1
is the small segment in the middle that updates the field in the
playerdata table. The code before and after that simply displays the
record from the table we are modifying (in the same way as the last
example).

Let’s look at the middle segment to see how it works.

query << "UPDATE playerdata SET password = 'qwerty' WHERE username = ‘Katy’";

First, we set the query to what we want it to be, just as we would enter
it in the MySQL console. Once we have our query set, we then need to
execute the query using the following command:

query.execute();

We did not require this command before as the store command that we
used to store the results in the Result class automatically executes the
query.

When we then execute the application, we see the values of the
record before and after we update the data. Here is a snapshot of the
output from our application:

As you can see, the password field has been changed successfully from
ka42 to qwerty as we intended.

Summary

In this chapter, you learned how to create and use a MySQL database
from both the MySQL console and a C++ application. In the next chap-
ter, we move on to learning how to create web-based interfaces for our
game servers using the PHP language.

Chapter 2 / Using Databases 55

Figure 2-54

This page intentionally left blank.

Chapter 3

Creating
Web-Based
Server Interfaces

Introduction

In this chapter we are going to look at the PHP4 language and then
learn how to use it to create web-based interfaces for our game
servers.

First, however, we will look at how to set up an Apache web server
in Windows XP (so we can test our code locally), and then we will
install and provide the PHP4 functionality within it. After this, we will
look at the foundations of the PHP4 language, moving from accessing a
game database to developing a complete web interface for a game
server.

Setting Up an Apache 1.3.x Web Server

The first step is to get the Apache package, either by downloading it
from http://www.apache.org or installing it directly from the companion
CD.

The Apache package on the CD has a file named apache_1.3.28-
win32-x86-no_src.msi. Start the installation by double-clicking this file.

57

You should then be presented with the following installation splash
screen.

Click Next in the splash screen, read and accept the license, then click
Next twice, so that the following dialog is visible.

In this dialog, since it is simply a testing server, we can enter 127.0.0.1
(the localhost) in both the Network Domain and the Server Name
fields.

Then set the Administrator’s Email Address field to something like
andrew@127.0.0.1, as this again is irrelevant here. Next, ensure the
Run as a service for All Users radio button is selected and click Next to
continue.

You will then be asked if you wish to install the complete package or
perform a custom installation.

58 Chapter 3 / Creating Web-Based Server Interfaces

Figure 3-1
Installing
Apache 1.3.x

Figure 3-2
Setting up the
server informa-
tion

Leave this as a Complete install, unless you have reason to do other-
wise, and click Next to proceed.

Next, you will be asked to select the location to which Apache
should be installed, which will have a subfolder to hold the web site
data. The dialog for this is shown in Figure 3-4.

As can be seen in the dialog, the default installation folder is C:\Pro-
gram Files\Apache Group, which again should be left alone unless you
have reason to change it. After accepting the installation folder by click-
ing Next, you will be prompted to start the installation process. Do this
now by clicking the Install button. Apache will install and start running
automatically after the installation is complete and also each time Win-
dows starts up.

You can test to see if your installation was successful by entering
http://127.0.0.1/ in your web browser (such as Internet Explorer).

Chapter 3 / Creating Web-Based Server Interfaces 59

Figure 3-3
Installation
type

Figure 3-4
Installation
folder

When you do this, you should see a web page displayed as follows:

Installing PHP4 for Apache 1.3.x

Once our local testing web server is set up, we can add PHP support to
it, allowing pages ending with the extension .php and .php3 to be first
parsed by PHP4 before being sent to the browser.

To install PHP4, first grab the PHP4 package php-4.3.4-Win32.zip
from either the PHP web site (www.php.net) or the companion CD.

Once you have this zip file, extract it to the folder C:\php, using a
utility such as WinZip (the shareware version is available on the CD as
well as a download from www.winzip.com). When the files are
extracted, the directory structure should look as follows:

60 Chapter 3 / Creating Web-Based Server Interfaces

Figure 3-5
Testing the
installation

Figure 3-6
The extracted
PHP zip file

We then want to copy two dynamic link libraries (DLLs) into the Win-
dows system folder (usually C:\windows\system or C:\winnt\
system). Copy the following two files, located within the C:\php and
C:\php\sapi folders respectively, into the Windows system folder now:
php4ts.dll and php4apache.dll.

Now we want to copy the standard PHP configuration file,
php.ini-dist (located in the C:\php folder), into the Windows directory
(i.e., C:\windows or C:\winnt). Once there, rename the file to php.ini
and open it in Notepad.

We need to make one minor adjustment to the php.ini file to specify
the correct temporary folder in which to store session data (we’ll learn
about this later in the chapter, but basically it’s a very easy and safe
way of using cookies). So, once the file is open in Notepad, perform a
search for the string “/tmp” until you find the following line:

session.save_path = /tmp

Once this is found, change it to read as follows:

session.save_path = c:\temp

Then ensure that you create a folder on your C:\ drive called temp.
Save the changes to the php.ini file and close Notepad.

The final step is to inform Apache about PHP by editing the Apache
configuration file. To do this, first open the configuration file called
httpd.conf in Notepad, which is located in the C:\Program Files\Apache
Group\Apache\conf folder (providing you have installed Apache to the
default directory). Once the file is open in Notepad, add the following
two lines to it:

LoadModule php4_module c:/php/sapi/php4apache.dll
AddType application/x-httpd-php .php

After this change is made, we need to restart the Apache web server in
order to load in the PHP4 module. To restart the server, go into the
Start menu and then into the Programs submenu. Select the Apache
HTTP Server folder, then Control Apache Server, and then Restart.

After this is done, we need to make sure the PHP integration was
successful.

The main web folder is located at the following location: C:\Program
Files\Apache Group\Apache\htdocs. So any file placed within this folder
would be accessible from the following URL: http://127.0.0.1/.

Therefore, if we created a subfolder within the htdocs folder, such as
mysite, the entire path would look as follows: C:\Program Files\Apache
Group\Apache\htdocs\mysite.

We could then access this from the URL http://127.0.0.1/mysite/.
As you can see, this is a useful way to organize your different web

projects.

Chapter 3 / Creating Web-Based Server Interfaces 61

Anyway, back to the point. We need to test PHP, so to do this we can
write a very simple PHP script that displays all the information about
the PHP installation. So let’s now create a file called test.php that will
be placed within the htdocs folder. Once created, open this file in Note-
pad, then enter the following into it.

test.php

<?php
print phpinfo();

?>

If you then access the URL http://127.0.0.1/test.php, you should see the
following page visible in the browser:

If when you access the URL, it does not look like Figure 3-7, but
instead looks similar to Figure 3-8….

check that you have:

� Followed the previous installation instructions precisely

� Named the file test.php and not test.php.txt

� Restarted the Apache server

62 Chapter 3 / Creating Web-Based Server Interfaces

Figure 3-7
A successful
PHP installa-
tion

Figure 3-8
A failed PHP
installation

Now that you have successfully installed Apache and PHP4, we are
going to look at the basics of the PHP language.

Using PHP: Hypertext Preprocessor

Now that PHP is installed successfully, the next step is to grab a decent
editor, as Notepad doesn’t quite suffice for coding PHP. The best free
IDE (integrated development environment) in our opinion is PHPEdit
(http://www.phpedit.net); however, if you have some money to burn,
you may wish to take a look at Dreamweaver MX (http://www.macro-
media.com).

Which IDE you use is really personal preference, so experiment
with different ones and see which you prefer.

To get started, let’s create a folder in the htdocs folder called
testsite, then, assuming you’re using our editor of choice (PHPEdit),
browse to the folder using the File Explorer window. When this is done,
depending on how you lay out the IDE, it should look something similar
to the following.

Chapter 3 / Creating Web-Based Server Interfaces 63

Figure 3-9
PHPEdit IDE

The Basics

In the previous version of PHP (version 3), PHP files had the file
extension .php3, but since the fourth release all PHP files should have
the extension .php. This indicates to the Apache web server that the
file should be parsed by the preprocessor before it is output to the cli-
ent’s web browser.

Just as index.html and index.htm are recognized as default pages
that should be loaded when someone types in a URL, so can index.php
be used as the default page.

All PHP code with a .php file extension needs to be placed within
special tags. Before you write any PHP code, you must first tell the
preprocessor that you are going to do so. This is indicated by specifying
the following tag:

<?php

After you have finished writing PHP code, you close the tag with the
following:

?>

Within the PHP tags, you can also add comments to your code in
exactly the same way as C++:

// single line comment

/* multi
line
comment */

Let’s try an example. Save a file within the IDE called index.php to the
testsite folder.

Example 1 — index.php

<html>
<head>

<title>Example PHP File</title>
</head>
<body>

This is an example PHP file
</body>

</html>

When we call the example in the web browser (http://127.0.0.1/testsite/
index.php), we should see the output shown in Figure 3-10.

64 Chapter 3 / Creating Web-Based Server Interfaces

Wait! That’s just a standard HTML file with no PHP, yet it’s in a PHP
file! Well, basically anything outside of the PHP tags is interpreted as
standard HTML and is output to the browser as normal. This is very
useful as we can turn PHP on and off as we require — even hundreds
of times within the same source file. Let’s look at a more exciting
example that uses variables.

Variables

Although PHP does have types of variables (such as INT, FLOAT, etc.),
they are all handled internally so there is little need to worry about the
actual type of your variables. Note, however, that it is possible to
directly set and get the types. We will look into this in more detail later.

As well as types not being overly important, there is also no need to
declare a variable; you can just initialize it and use it directly. Let’s
expand upon our previous example to show how to assign and print
variables to the screen.

Example 2 — index2.php

<?php

$name = "Andrew";
$website = "www.huntedcow.com";
$number = 5;

?>

<html>
<head>

<title>Example PHP File</title>
</head>
<body>

This is an example PHP file

<?php

print "Name was $name";
print "
Website was

$website";
print "
The number was $number";

?>
</body>

</html>

Chapter 3 / Creating Web-Based Server Interfaces 65

Figure 3-10
Example 1
output

When we load Example 2 in the browser (http://127.0.0.1/testsite/
index2.php), it should look somewhat like the following:

At the top of the file, we start with the following block of code:

<?php

$name = "Andrew";
$website = "www.huntedcow.com";
$number = 5;

?>

All we are doing here is entering a PHP block and assigning three vari-
ables. Note that variables are defined by the use of the “$” sign and we
use the " to denote strings, whereas we just assign numbers directly.
We then turn PHP off using the ?> tag and continue by printing out
HTML as we did in the previous example.

Then, we enter PHP again and print out the $name variable using
the following line of code:

print "Name was $name";

Notice in this line how we actually have the $name variable within
another string that we wish to print. Before the string is output to the
browser, the value of $name is replaced with the actual value, which in
this example is “Andrew.”

The next line creates a web link using HTML and places the
$website variable within the href and also after it to display it to the
browser. This can be seen in the following line of code:

print "
Website was $website";

Notice how we have used " within the string. This is possible as we
have “escaped” them by adding a backslash \ before each occurrence.

Finally, we printed the number variable $number using the follow-
ing line of code:

print "
The number was $number";

Note in this final line how we have placed a bold HTML text tag in front
of the $number variable so that when it is printed it comes out bold.

66 Chapter 3 / Creating Web-Based Server Interfaces

Figure 3-11
Example 2
output

Operators and Loops

Next in our brief overview we are going to take a look at simple mathe-
matical operators and loops. PHP supports all the basic operators as
well as the shortcuts that C++ contains (such as the += operator).
Let’s look at the next example where we print out a multiplication
table.

Example 3 — index3.php

<html>
<head>

<title>Example PHP File</title>
</head>
<body>

<center>
Multiplication Table

<table border=1>
<?php

for($i = 1; $i <= 10; $i++)
{

?><tr><?php

for($j = 1; $j <= 10; $j++)
{

print "<td align=\"right\">";
print ($i*$j);
print "</td>";

}

?></tr><?php
}
?>

</table>
</body>

</html>

When you run Example 3 in the browser (http://127.0.0.1/testsite/
index3.php), you should see the multiplication table shown in Figure
3-12.

Chapter 3 / Creating Web-Based Server Interfaces 67

To display the multiplication table, we set up two for loops. The first is:

for($i = 1; $i <= 10; $i++)

This initializes a variable called $i to the value of 1, then increments it
by 1 each time through the loop. Inside this loop, a table row is initial-
ized in HTML and another loop is created to fill in the row with values.
This can be seen here:

for($j = 1; $j <= 10; $j++)
{

print "<td align=\"right\">";
print ($i*$j);
print "</td>";

}

Then, before the outer loop is terminated, the table row is ended.

Conditional Statements

Next, we will look at how to construct a simple if statement. For an
example, we will expand upon the previous multiplication table exam-
ple and make the top and left-hand numbers bold. Take a look at
Example 4.

Example 4 — index4.php

<html>
<head>

<title>Example PHP File</title>
</head>
<body>

<center>
Multiplication Table

<table border=1>
<?php

for($i = 1; $i <= 10; $i++)

68 Chapter 3 / Creating Web-Based Server Interfaces

Figure 3-12
Example 3
output

{
?><tr><?php

for($j = 1; $j <= 10; $j++)
{

print "<td align=\"right\">";

if($i == 1 || $j == 1)
print "";

print ($i*$j);
print "</td>";

}

?></tr><?php
}
?>

</table>
</body>

</html>

When this is executed within the browser (http://127.0.0.1/testsite/
index4.php), it should look like the following:

As you can see from the code, all we have added in this example is the
following two lines:

if($i == 1 || $j == 1)
print "";

All this if statement does is print the tag to the browser if the $i
or $j variables are equal to 1. Simple stuff!

The other important conditional statement is the switch statement,
which works in the same manner as it does in C++. However, in PHP
it is also possible to use strings within the case. For example:

$mystring = “andrew”;

switch($mystring)
{

Chapter 3 / Creating Web-Based Server Interfaces 69

Figure 3-13
Example 4
output

case “andrew”:
// do something
break;

case “teijo”:
// do something else
break;

}

Arrays

As with variables, there is no need to initialize arrays and they are
treated in exactly the same manner as variables. For example, we could
set three values in an array as follows:

$myarray[0] = “Andrew”;
$myarray[1] = “Teijo”;
$myarray[2] = “Wes”;

Then we could display them with the following code segment:

for($i=0; $i<count($myarray); $i++)
print $myarray[$i];

Functions

When we start thinking about functions, we get into the area of variable
scope. In PHP, when a variable is declared within a function, its value is
local to that function unless the global keyword is specified before it.
Let’s look at a simple example of how to create a function to print a
string of text that is passed into it.

Example 5 — index5.php

<html>
<head>

<title>Example PHP File</title>
</head>
<body>

<?php
WriteString("Hello!");
?>

</body>
</html>

<?php
function WriteString($theString)
{

print $theString;
}
?>

70 Chapter 3 / Creating Web-Based Server Interfaces

When this is executed in the browser (http://127.0.0.1/testsite/
index5.php), the following should be shown:

User Input

Now we get into the territory where PHP differs from C++ in many
ways, purely due to the integration with HTML. To gather input from
the user, we use HTML forms. For an example of user input, we are
going to create two PHP scripts. The first, input.php, will simply dis-
play an HTML form. The second, output.php, will display the
information that was gathered by the form. Here are the two files that
are required to make this example work.

Example 6a — input.php
<html>

<head>
<title>Example PHP File</title>

</head>
<body>

<center>
<form method="post" action="output.php">

<table border=1>
<tr>

<td>Your name:</td><td><input
type="text" name="YourName"></td>

</tr>
<tr>

<td>Your favourite color:</td>
<td>

<select name="YourColor">
<option value="Red">Red</

option>
<option value="Blue">Blue</

option>
<option value="Green">

Green</option>
</select>

</td>
</tr>
<tr>

<td>Over 18?:</td><td><input type=
"checkbox" name="Over18"></td>

Chapter 3 / Creating Web-Based Server Interfaces 71

Figure 3-14
Example 5
output

</tr>
<tr>

<td colspan=2>
<center>

<input type="submit"
value="Send Data">

</center>
</td>

</tr>
</table>

</form>
</center>

</body>
</html>

Example 6b — output.php

<html>
<head>

<title>Example PHP File</title>
</head>
<body>

<center>
<?php

print "Name was ".$_POST["YourName"]."
";
print "Color was ".$_POST["YourColor"]."
";

if($_POST["Over18"] == "on")
{

print "Over 18 was ticked";
}
else
{

print "The user was under 18";
}

?>
</center>

</body>
</html>

When we load the input.php file into the web browser and fill in some
information, it will look similar to the following (http://127.0.0.1/
testsite/input.php):

72 Chapter 3 / Creating Web-Based Server Interfaces

Figure 3-15
Example 6 —
input.php

When the Send Data submit button is clicked, we should expect some-
thing similar to the following to be visible.

So how did the information get sent? When using a form, there are two
methods of sending information to another page. The best method is
the POST method. If you look at where we have declared the form in
input.php, you will see this.

<form method="post" action="output.php">

Note also that we have specified the action as output.php, which means
that any data collected by the form will be sent to the output.php script
upon the user clicking the Submit button. When the data arrives in out-
put.php, it is stored within a global array called $_POST, which is
accessed associatively via the name the input was given on the form.
For example, the name input was declared in the form as follows:

<input type="text" name="YourName">

Which means that when this is passed to output.php, it can be accessed
by referencing:

$_POST[“YourName”]

Similarly, if the form method is specified as GET (which means the data
is attached to the end of the URL), the global $_GET array can be used
to access the data in the same way.

The “Command” System

Now that we have skimmed the basics of PHP, let’s start to look at how
to correctly structure our code and keep it maintainable for larger pro-
jects. What you’re about to learn is the “command” system. (I’m not
sure if it has an official name, but I think it’s an okay name for it�.)

The idea behind this is to give our code a central processing point
that then references methods to actually deal with the functionality.
Let’s take a look at the following core.php and welcome.php files:

Chapter 3 / Creating Web-Based Server Interfaces 73

Figure 3-16
Example 6 —
output.php
after being
passed form
data

Example 7a — core.php

<?php

// include libraries here...
include("welcome.php");

// command processing...
switch($cmd)
{

default:
showWelcome();
break;

}

?>

Example 7b — welcome.php

<?php

function showWelcome()
{

?>
<html>

<head>
<title>The command processor example</title>

</head>
<body>

This is the welcome page
</body>

</html>
<?php

}

?>

When we execute this example in the browser (http://127.0.0.1/testsite/
core.php), we should expect the following to be visible:

74 Chapter 3 / Creating Web-Based Server Interfaces

Figure 3-17
Example 7 —
core.php

In our core.php file, we first call the include function and pass in the
filename welcome.php, which basically includes the welcome.php file
when executing the code. Then we create a switch statement that
examines the value of a $cmd variable (which, as it is not contained
within a function, is global). We then make the default of the switch
statement call the showWelcome method, which is defined within the
welcome.php file and simply prints “This is the welcome page” to the
browser.

Let’s expand upon this to create multiple pages. Before this, how-
ever, we are going to create a header.php and a footer.php file which will
contain the methods showHeader and showFooter, respectively.
We’ll then call the header method before and the footer method after
the switch statement in core.php so we can put any standard look and
feel of the page there without rewriting it for each page. These files will
look as follows:

header.php

<?php
function showHeader()
{

?>
<html>

<head>
<title>Command Processor</title>

</head>
<body bgcolor="#0000AA">

<center>
<table width="600" border=1 bgcolor="#FFFFFF">

<tr>
<td>

<?php
}

?>

footer.php

<?php
function showFooter()
{

?>
</td>

</tr>
</table>

</center>
</body>

</html>

Chapter 3 / Creating Web-Based Server Interfaces 75

<?php
}

?>

If we then create the files page1.php and page2.php, adding some text
and hyperlinks into them, we will have the following four files (exclud-
ing the header and footer):

Example 8a — core.php

<?php

// include libraries here...
include("header.php");
include("footer.php");

include("welcome.php");
include("page1.php");
include("page2.php");

// command processing...
showHeader();

switch($cmd)
{

case "page1":
showPage1();
break;

case "page2":
showPage2();
break;

default:
showWelcome();
break;

}

showFooter();

?>

Example 8b — welcome.php

<?php
function showWelcome()
{

?>
<center>

Welcome!

76 Chapter 3 / Creating Web-Based Server Interfaces

Please click one of the following pages to visit it...
</center>

Page 1
Page 2

<?php

}

?>

Example 8c — page1.php

<?php
function showPage1()
{

?>
<center>

Page 1

Welcome to page 1! Why not visit

page 2?
</center>
<?php

}

?>

Example 8d — page2.php

<?php
function showPage2()
{

?>
<center>

Page 2

Welcome to page 2! Why not either

go back to page 1
or visit the welcome page again.

</center>
<?php

}

?>

Chapter 3 / Creating Web-Based Server Interfaces 77

When you load up the core.php file in the browser, you should see the
following:

Clicking on either of the Page 1 or Page 2 links will display the respec-
tive pages. Notice the following in the address bar of the browser when
you click the Page 1 link: http://127.0.0.1/testsite/core.php?cmd=
page1.

As you can see, the variable cmd has been set to the value page1.
This is generated automatically when you use a form (with the GET
method) and is done without placing the information in the URL with
the POST method. To add multiple variables to the URL you can
delimit them with the “&” character. For example:

http://127.0.0.1/testsite/core.php?cmd=page1&myothervar=blah

Accessing MySQL

Let’s see how we can utilize the SQL language we discovered in the
previous chapter with PHP. MySQL works exceptionally well with PHP
and there are in fact built-in functions for interacting with MySQL. In
this section we are going to look at these functions and see how to
store, retrieve, and modify information in the database directly from the
web browser.

MySQL Example 1 — Connecting and
Disconnecting

In this first example we are going to find out how to connect and termi-
nate a connection to a database. Let’s first create a database in MySQL
by executing the following at the MySQL command prompt:

mysql> CREATE DATABASE phptest;

78 Chapter 3 / Creating Web-Based Server Interfaces

Figure 3-18
Example 8 —
core.php

After that is created, we can make a PHP script that will connect to,
use, and disconnect from the database. Let’s take a look at this script
now, which we have called mysql1.php.

mysql1.php

<?php

// connect...
$dbh = mysql_connect("localhost", "root", "");

// select the database...
if(!mysql_select_db("phptest", $dbh))

print "Unable to connect to db";

// disconnect...
mysql_close($dbh);

?>

In this example, we first make a call to mysql_connect, which takes
in the host the database is running on (which 99 percent of the time
will be the computer/server the script is executing on). The second
parameter is the username and the third is the password required to
connect to the database server.

If the connection fails, PHP will output descriptive errors to the
browser, which will look something like the following (we’ve changed
the password to be incorrect):

MySQL Example 2 — Storing and Retrieving Data

Now that we know how to connect to the database, let’s look at how we
can store and display information stored within the database. For this,
we are going to be using the command processor setup we learned ear-
lier in this chapter.

Before we delve into the PHP, let’s first create a table called users
within the database for storing players’ names, ages, aliases, and pass-
words. Here is the MySQL query we require to do this:

Chapter 3 / Creating Web-Based Server Interfaces 79

Figure 3-19
A connection
failure

mysql> create table users (
-> id int auto_increment,
-> name tinytext,
-> age int,
-> alias tinytext,
-> password tinytext,
-> primary key(id));

Now let’s look at the complete source code for this example, then we
will look into detail at how it works. (Note that we also require the
header.php and footer.php files we created earlier.)

mysqlcore.php

<?php

// include libraries here...
include("header.php");
include("footer.php");

include("users.php");

// special commands (no header/footer)
switch($cmd)
{

case "doadduser":
doAddUser();
exit();

}

// command processing...
showHeader();

switch($cmd)
{

case "adduser":
addUser();
break;

default:
showUsers();
break;

}

showFooter();

?>

80 Chapter 3 / Creating Web-Based Server Interfaces

users.php

<?php
function showUsers()
{

?>
<center>

Registered Users

Add User

<table width="450" border="1" cellpadding="4">

<tr bgcolor="#BBBBBB">
<td width="25%">Name</td>
<td width="25%">Age</td>
<td width="25%">Alias</td>
<td width="25%">Password</td>

</tr>
<?php
// connect...
$dbh = mysql_connect("localhost", "root", "");

// select the database...
mysql_select_db("phptest", $dbh);

// fetch all the users...
$results = mysql_query("SELECT * FROM users ORDER BY name",

$dbh);
while($row = mysql_fetch_array($results))
{

print "<tr>";
print "<td>".htmlspecialchars($row["name"])."</td>";
print "<td>".htmlspecialchars($row["age"])."</td>";
print "<td>".htmlspecialchars($row["alias"])."</td>";
print "<td>".htmlspecialchars($row["password"])."</td>";
print "</tr>";

}

mysql_close($dbh);

?>
</table>

</center>
<?php

}

function addUser()
{

?>
<center>

Add User Form

<form method="POST" action="mysqlcore.php">

Chapter 3 / Creating Web-Based Server Interfaces 81

<input type="hidden" name="cmd" value="doadduser">
<table width="450" border="1" cellpadding="4">

<tr>
<td>Name:</td>
<td><input type="text" name="name"></td>

</tr>
<tr>

<td>Age:</td>
<td><input type="text" name="age" size=3></td>

</tr>
<tr>

<td>Alias:</td>
<td><input type="text" name="alias"></td>

</tr>
<tr>

<td>Password:</td>
<td><input type="password" name=

"password"></td>
</tr>

</table>

<input type="submit" value="Add User">
<input type="button" value="Cancel" onClick=

"window.location = 'mysqlcore.php'">
</form>

<?php
}

function doAddUser()
{

// connect...
$dbh = mysql_connect("localhost", "root", "");

// select the database...
mysql_select_db("phptest", $dbh);

// add the new user...
mysql_query("INSERT INTO users VALUES (NULL, \"".$_POST["name"]."\",

\"".$_POST["age"]."\", \"".$_POST["alias"]."\",
\"".$_POST["password"]."\")", $dbh);

// close the connection...
mysql_close($dbh);

// Redirect the page...
header("Location: mysqlcore.php");

}
?>

When we execute this in the browser (http://127.0.0.1/testsite/
mysqlcore.php), we should have two screens available that look as fol-
lows (note that we added two users before taking the screen shots).

82 Chapter 3 / Creating Web-Based Server Interfaces

Let’s now see how this works.
First, we have the showUsers function in users.php, which dis-

plays a list of all the users stored in the users table, ordered by the
name. In this method, we first connect to the database as we did in the
previous example using the following two lines of code:

$dbh = mysql_connect("localhost", "root", "");
mysql_select_db("phptest", $dbh);

After we are connected, we execute a SELECT query by calling the
mysql_query method, passing in the query we wish to execute and
the handle to the database (which we obtained with the mysql_con-
nect method).

$results = mysql_query("SELECT * FROM users ORDER BY name", $dbh);

We then have a handle to the result set in a variable called $results.
We can use this to actually retrieve the results into an associative array
using the mysql_fetch_array function.

while($row = mysql_fetch_array($results))
{

Chapter 3 / Creating Web-Based Server Interfaces 83

Figure 3-20
Registered
users

Figure 3-21
The Add User
screen

The array $row can be accessed by passing the string names of the
field names in the database into it (such as name and alias).

Within this while loop, a new table row (<tr>) is created for each
entry in the database and it is printed out to the browser.

The addUser function simply displays the HTML form for gather-
ing the information; however, note the following line within the form:

<input type="hidden" name="cmd" value="doadduser">

By adding a “hidden” input to the form, we can specify a command for
our command processor to interpret; in this case we have specified the
doadduser command, which will in turn call the doAddUser
function.

The doAddUser function is called in the mysqlcore.php before the
showHeader function is called as it is not intended to display any
information. Basically, the doAddUser function will insert the data
into the MySQL database and send the browser to a different page
without the user ever knowing. The reason behind this is simple: If the
browser was not redirected, the user would be inserted into the data-
base again if he hit Refresh on the page.

So, in the doAddUser function, once the database connection is
established, it is then a simple case of performing an INSERT query,
feeding the form data into the SQL statement. This can be seen in the
following line of code:

mysql_query("INSERT INTO users VALUES (NULL, \"".$_POST["name"]."\",
\"".$_POST["age"]."\", \"".$_POST["alias"]."\",
\"".$_POST["password"]."\")", $dbh);

After this, the connection is closed and a call to the PHP header
method is made. Into that is passed the location to which the browser
should be redirected. This can be seen here:

header("Location: mysqlcore.php");

MySQL Example 3 — Updating and Removing
Data

In this final MySQL example, we look at how to modify and remove
data directly from PHP by expanding upon the previous example.

Let’s first look at the complete modified code and then we will look
into the required changes.

84 Chapter 3 / Creating Web-Based Server Interfaces

mysqlcore.php

<?php

// include libraries here...
include("header.php");
include("footer.php");

include("users.php");

// special commands (no header/footer)
switch($cmd)
{

case "doadduser":
doAddUser();
exit();

case "deleteuser":
deleteUser();
exit();

}

// command processing...
showHeader();

switch($cmd)
{

case "adduser":
addUser();
break;

default:
showUsers();
break;

}

showFooter();

?>

users.php

<?php
function showUsers()
{

?>
<center>

Registered Users

Add User

<table width="450" border="1" cellpadding="4">

<tr bgcolor="#BBBBBB">

Chapter 3 / Creating Web-Based Server Interfaces 85

<td width="25%">Name</td>
<td width="25%">Age</td>
<td width="25%">Alias</td>
<td width="25%">Password</td>
<td width="25%">Edit</td>
<td width="25%">Delete</td>

</tr>
<?php
// connect...
$dbh = mysql_connect("localhost", "root", "");

// select the database...
mysql_select_db("phptest", $dbh);

// fetch all the users...
$results = mysql_query("SELECT * FROM users ORDER BY name",

$dbh);
while($row = mysql_fetch_array($results))
{

print "<tr>";
print "<td>".htmlspecialchars($row["name"])."</td>";
print "<td>".htmlspecialchars($row["age"])."</td>";
print "<td>".htmlspecialchars($row["alias"])."</td>";
print "<td>".htmlspecialchars($row["password"])."</td>";
print "<td><input type=\"button\" value=\"Edit\"

onClick=\"window.location = 'mysqlcore.php?cmd=
adduser&id=".$row["id"]."';\"></td>";

print "<td><input type=\"button\" value=\"Delete\"
onClick=\"window.location = 'mysqlcore.php?cmd=
deleteuser&id=".$row["id"]."';\"></td>";

print "</tr>";
}

mysql_close($dbh);

?>
</table>

</center>
<?php

}

function addUser()
{

$id = $_GET["id"];

if($id != "")
{

$dbh = mysql_connect("localhost", "root", "");
mysql_select_db("phptest", $dbh);

$results = mysql_query("SELECT * FROM users WHERE id =
'$id'", $dbh);

if($row = mysql_fetch_array($results))
{

86 Chapter 3 / Creating Web-Based Server Interfaces

$name = $row["name"];
$age = $row["age"];
$alias = $row["alias"];
$password = $row["password"];

}

mysql_close($dbh);
}

?>
<center>

<?php
if($id == "")

print "Add User Form";
else

print "Edit User Form";
?>

<form method="POST" action="mysqlcore.php">
<input type="hidden" name="cmd" value="doadduser">
<input type="hidden" name="id" value="<?php print $id; ?>">

<table width="450" border="1" cellpadding="4">
<tr>

<td>Name:</td>
<td><input type="text" name="name" value=

"<?php print $name; ?>"></td>
</tr>
<tr>

<td>Age:</td>
<td><input type="text" name="age" size=3 value=

"<?php print $age; ?>"></td>
</tr>
<tr>

<td>Alias:</td>
<td><input type="text" name="alias" value=

"<?php print $alias; ?>"></td>
</tr>
<tr>

<td>Password:</td>
<td><input type="password" name="password"

value="<?php print $password; ?>"></td>
</tr>

</table>

<input type="submit" value="<?php

if($id == "")
print "Add User";

else
print "Save Changes";

?>">
<input type="button" value="Cancel" onClick=

"window.location = 'mysqlcore.php'">
</form>

Chapter 3 / Creating Web-Based Server Interfaces 87

<?php
}

function doAddUser()
{

$id = $_POST["id"];

// connect...
$dbh = mysql_connect("localhost", "root", "");

// select the database...
mysql_select_db("phptest", $dbh);

// add the new user...
if($id == "")

mysql_query("INSERT INTO users VALUES (NULL,
\"".$_POST["name"]."\", \"".$_POST["age"]."\",
\"".$_POST["alias"]."\", \"".$_POST["password"]."\")", $dbh);

else
{

// update the details...
mysql_query("UPDATE users SET name = \"".$_POST["name"]."\", age

= \"".$_POST["age"]."\", alias = \"".$_POST["alias"]."\",
password = \"".$_POST["password"]."\" WHERE id = '$id'",
$dbh);

}

// close the connection...
mysql_close($dbh);

// Redirect the page...
header("Location: mysqlcore.php");

}

function deleteUser()
{

$id = $_GET["id"];

// connect...
$dbh = mysql_connect("localhost", "root", "");

// select the database...
mysql_select_db("phptest", $dbh);

// delete the user...
mysql_query("DELETE FROM users WHERE id = '$id'", $dbh);

// close the connection...
mysql_close($dbh);

// Redirect the page...
header("Location: mysqlcore.php");

}
?>

88 Chapter 3 / Creating Web-Based Server Interfaces

When this is run in the browser, the main screen should look similar to
the following screenshot:

As you can see from Figure 3-22, we have added two extra columns to
the table to allow the editing and deletion of any of the users added to
the system. When the user clicks the Edit button, an onClick JavaScript
call to change the URL to the following occurs:

mysqlcore.php?cmd=adduser&id=[UID];

[UID] is replaced in the above line with the user’s unique ID within the
database. As you can see, however, we are sending the same adduser
command as if the user clicked the Add User link at the top of the page.
This is so we can reuse the same form we created for adding a user to
allow the user to edit the stored information.

In the addUser function, we now first obtain the id variable passed
in the URL and check whether it has been assigned a value using the
following few lines of code:

$id = $_GET["id"];

if($id != "")
{

If an id has been passed in the URL, we then attempt to retrieve the
user’s details from the database using the following segment of code:

$dbh = mysql_connect("localhost", "root", "");
mysql_select_db("phptest", $dbh);

$results = mysql_query("SELECT * FROM users WHERE id = '$id'", $dbh);
if($row = mysql_fetch_array($results))
{

$name = $row["name"];
$age = $row["age"];
$alias = $row["alias"];
$password = $row["password"];

Chapter 3 / Creating Web-Based Server Interfaces 89

Figure 3-22
Edit and Delete
buttons

}

mysql_close($dbh);

We can then print these values to the form (since if there was no data,
the variables contain no data). For example, here is the name input box:

<input type="text" name="name" value="<?php print $name; ?>">

Note in the form that we also need to pass the id to the doAddUser
function by including it as a hidden field in the form, as follows:

<input type="hidden" name="id" value="<?php print $id; ?>">

In the doAddUser function, we can once again check the value of the
id variable (note that it comes through as a POST variable from the
form, however). If the id variable is not assigned, we know it is a new
user and add it to the database. If it is assigned a value, we simply cre-
ate an UPDATE statement and amend the details stored in the database
to the new values passed in from the form.

The other part of this example is where the user clicks the Delete
button. When this happens, in the same way as the Edit button, we call
the following URL:

mysqlcore.php?cmd=deleteuser&id=[UID]

Again, [UID] is substituted with the user’s id field within the database.
As can be seen from the URL, the deleteuser command is passed to
mysqlcore.php. When this happens, it makes a call to the deleteUser
function we have created, which then redirects back to the main screen
after the SQL to remove the user has been executed.

Using FastTemplate

Now that we have looked at how to access MySQL from within PHP,
you are probably looking at the code and thinking it is getting messy —
and you would be correct.

The best way to keep our code tidy is to separate the logic from the
design elements (i.e., the HTML). In this final section we are going to
look at the FastTemplate class (http://www.thewebmasters.net/
php/FastTemplate.phtml and also available on the CD) to see how it can
solve our messy code problem.

The idea of FastTemplate is in its name — templates! Basically the
plan is to create templates of what your pages, rows of tables, etc.,
should look like with placeholders for information to be filled in. The
code will then assign values to these placeholders and eventually print
it all to the screen.

90 Chapter 3 / Creating Web-Based Server Interfaces

Let’s first look at a very simple example where we create a template
file with two placeholders (defined by the curly brackets). Here is our
template file now:

simple.tpl.html

<html>
<title>{PAGE_TITLE}</title>
<body>

The name was specified as {NAME}
</body>

</html>

This file should be saved in a folder called tpl, which should be a
subfolder of the main testsite directory. If we open up this file in the
browser directly (http://127.0.0.1/testsite/tpl/simple.tpl.html), it will
look something like the following.

As you can see, we have added the following two placeholders:

{PAGE_TITLE}
{NAME}

So we now need to write code that will use FastTemplate in conjunction
with our simple.tpl.html file to generate the final page with the correct
values. Let’s look at this file now:

ft.php

<?php
include("class.FastTemplate.php");

// Create a FastTemplate object...
$tpl = new FastTemplate("./tpl");

// Define the template files...
$tpl->define(array(simple => "simple.tpl.html"));

// Assign the placeholder values...
$tpl->assign("PAGE_TITLE", "FastTemplate Example Script");
$tpl->assign("NAME", "Andrew");

// Parse the template
$tpl->parse("FINAL", "simple");

Chapter 3 / Creating Web-Based Server Interfaces 91

Figure 3-23
simple.tpl.html

// Display the final page
$tpl->FastPrint();
?>

When we load this into the browser (http://127.0.0.1/testsite/ft.php),
we should see the following (note that we have moved the
class.FastTemplate.php file from the CD into the testsite directory
also):

As you can see from Figure 3-24 (and if you run the script), {PAGE_
TITLE} has been replaced with “FastTemplate Example Script” and
{NAME} has been replaced with “Andrew.” Let’s now look line by line
at how this works.

The first line simply includes the FastTemplate source code:

include("class.FastTemplate.php");

After this, an instance of the FastTemplate class is created by passing in
the folder the template files is contained in as a parameter; the refer-
ence to this is then returned in the $tpl variable.

$tpl = new FastTemplate("./tpl");

Note that the folder can be easily changed to allow your web applica-
tions to be “skinned” with different designs without changing any of
the code (apart from the folder the templates are contained in, of
course).

After the FastTemplate instance is created, the next step is to define
the actual template files we will be using within the project and assign
them to keywords so that we can refer to them easily later in the code.
This can be seen here:

$tpl->define(array(simple => "simple.tpl.html"));

As you can see, we have defined the keyword simple to refer to our
simple.tpl.html file. Later in this section we will look at using multiple
template files; however, one is sufficient for this example.

Now we can assign the values to our placeholders by making a call to
the assign method of the FastTemplate class for each placeholder
using the following two lines of code:

$tpl->assign("PAGE_TITLE", "FastTemplate Example Script");
$tpl->assign("NAME", "Andrew");

92 Chapter 3 / Creating Web-Based Server Interfaces

Figure 3-24
ft.php

In the assign function, we first pass in the name of the placeholder
we wish to assign a value to (without the curly brackets). The second
parameter is simply the value we wish to assign it. Next, we call the
parse function, passing in a placeholder to parse the data to, along
with the keyword referring to the template file we wish to parse:

$tpl->parse("FINAL", "simple");

Note that the placeholder name, “FINAL,” is unimportant as this is the
final parse (we’ll see in the next example why more than one parse
would be required). The final line of code then prints out the last place-
holder to be parsed to the browser, in this case the “FINAL”
placeholder:

$tpl->FastPrint();

Multiple Templates

Now that we have looked at a simple example of using FastTemplate,
let’s look at how multiple template files can be used to construct a
small table. First, we are going to create a new template called
mainbody.tpl.html, which will look as follows:

mainbody.tpl.html

<html>
<title>{PAGE_TITLE}</title>
<body>

This text is above the table.

<table border=1 cellpadding=4>

{TABLE_DATA}
</table>

This text is below the table.

</body>
</html>

As you can see, it is very similar to the simple template we created in
the previous example; however, this time we have placed a table open
tag, then a placeholder called TABLE_DATA, and a table close tag.

That defines our main page; now we need to define what a row in
our table will look like. Assuming we would like to display a name, age,
and location in our table, we can create a template called
tablerow.tpl.html as follows:

Chapter 3 / Creating Web-Based Server Interfaces 93

tablerow.tpl.html

<tr>
<td>{NAME}</td>
<td>{AGE}</td>
<td>{LOCATION}</td>

</tr>

Within our tablerow template, we have defined three placeholders to be
replaced with the name, age, and location in each row of the table.

Let’s now look at the final script that will create the table with three
rows in it:

ft2.php

<?php
include("class.FastTemplate.php");

// Create a FastTemplate object...
$tpl = new FastTemplate("./tpl");

// Define the template files...
$tpl->define(array(mainbody => "mainbody.tpl.html",

tablerow => "tablerow.tpl.html"));

// Assign the placeholder values...
$tpl->assign("PAGE_TITLE", "FastTemplate Example Script");

$tpl->assign("NAME", "Andrew");
$tpl->assign("AGE", "21");
$tpl->assign("LOCATION", "Scotland");
$tpl->parse("TABLE_DATA", ".tablerow");

$tpl->assign("NAME", "Teijo");
$tpl->assign("AGE", "22");
$tpl->assign("LOCATION", "Finland");
$tpl->parse("TABLE_DATA", ".tablerow");

$tpl->assign("NAME", "Wes");
$tpl->assign("AGE", "unknown");
$tpl->assign("LOCATION", "USA");
$tpl->parse("TABLE_DATA", ".tablerow");

// Parse the template
$tpl->parse("FINAL", "mainbody");

// Display the final page
$tpl->FastPrint();

?>

94 Chapter 3 / Creating Web-Based Server Interfaces

When this ft2.php script is run in the browser, it will look like the
following:

This script is very similar to ft.php, but there are some interesting
changes. The first is that we have defined an additional template file
(and of course changed the simple one to refer to the new mainbody
one), as shown below:

$tpl->define(array(mainbody => "mainbody.tpl.html",
tablerow => "tablerow.tpl.html"));

After this, the page title is assigned. Then we put the first row of the
table in place by using the following four lines of code:

$tpl->assign("NAME", "Andrew");
$tpl->assign("AGE", "21");
$tpl->assign("LOCATION", "Scotland");
$tpl->parse("TABLE_DATA", ".tablerow");

Here we are assigning the NAME, AGE, and LOCATION placeholders,
then parsing the tablerow template with these values into the
TABLE_DATA placeholder within the mainbody template. Notice how
we use the “.” before the tablerow keyword in the parse function.
This simply means that we want the tablerow template to be appended
to the TABLE_DATA keyword. (If we did not use the “.”, only the last
row would be visible.)

Converting the Command Parser Example to
FastTemplate

Here we are going to convert our slightly larger command parser
example (where users can be added, edited, and deleted) to instead use
FastTemplate.

The first step is to create the templates. In the command parser
example, we have two main screens (the list of users and the Add User
form page). The table that displays the list of users also needs to have a

Chapter 3 / Creating Web-Based Server Interfaces 95

Figure 3-25
ft2.php output

template. We can also create a generic look-and-feel template instead of
using the header and footer idea. So we will be creating the following
list of templates:

Template Purpose

main.tpl.html Main look-and-feel (previously displayed with the
showHeader and showFooter functions)

userlist.tpl.html Contains the elements of the page that displays
the list of users

userlist_row.tpl.html Defines how a row in the user list should look

adduser.tpl.html Contains the form required for the add user page

And here is what each of these template files should contain:

main.tpl.html

<html>
<head>

<title>Command Processor (using FastTemplate)</title>
</head>
<body bgcolor="#0000AA">

<center>
<table width="600" border=1 bgcolor="#FFFFFF">

<tr>
<td>

{MAIN_CONTENT}
</td>

</tr>
</table>

</center>
</body>

</html>

userlist.tpl.html

<center>

Registered Users

Add User

<table width="450" border="1" cellpadding="4">

<tr bgcolor="#BBBBBB">
<td width="25%">Name</td>
<td width="25%">Age</td>
<td width="25%">Alias</td>
<td width="25%">Password</td>
<td width="25%">Edit</td>
<td width="25%">Delete</td>

</tr>
{TABLE_ROW}

96 Chapter 3 / Creating Web-Based Server Interfaces

</table>
</center>

userlist_row.tpl.html

<tr>
<td width="25%">{USER_NAME}</td>
<td width="25%">{USER_AGE}</td>
<td width="25%">{USER_ALIAS}</td>
<td width="25%">{USER_PASSWORD}</td>
<td width="25%"><input type="button" value="Edit" onClick=
"window.location = 'mysqlcore.php?cmd=adduser&id={USER_ID}'"></td>

<td width="25%"><input type="button" value="Delete" onClick=
"window.location = 'mysqlcore.php?cmd=deleteuser&id={USER_ID}';"></td>

</tr>

adduser.tpl.html

<center>

{FORM_TYPE} User Form

<form method="POST" action="mysqlcore.php">

<input type="hidden" name="cmd" value="doadduser">
<input type="hidden" name="id" value="{USER_ID}">
<table width="450" border="1" cellpadding="4">

<tr>
<td>Name:</td>
<td><input type="text" name="name" value=

"{USER_NAME}"></td>
</tr>
<tr>

<td>Age:</td>
<td><input type="text" name="age" size=3 value=

"{USER_AGE}"></td>
</tr>
<tr>

<td>Alias:</td>
<td><input type="text" name="alias" value=

"{USER_ALIAS}"></td>
</tr>
<tr>

<td>Password:</td>
<td><input type="password" name="password" value=

"{USER_PASSWORD}"></td>
</tr>

</table>

<input type="submit" value="{SUBMIT_TEXT}">
<input type="button" value="Cancel" onClick="window.location =

'mysqlcore.php'">
</form>

Chapter 3 / Creating Web-Based Server Interfaces 97

Next, we have edited mysqlcore.php and renamed it ftcore.php. Here is
how it looks now:

ftcore.php

<?php

// include libraries here...
include("class.FastTemplate.php");

// Create a FastTemplate object...
$tpl = new FastTemplate("./tpl");

// Define the template files...
$tpl->define(array(main => "main.tpl.html",

userlist => "userlist.tpl.html",
userlist_row => "userlist_row.tpl.html",
adduser => "adduser.tpl.html"));

include("ftusers.php");

// special commands (no header/footer)
switch($cmd)
{

case "doadduser":
doAddUser();
exit();

case "deleteuser":
deleteUser();
exit();

}

// command processing...
switch($cmd)
{

case "adduser":
addUser();
break;

default:
showUsers();
break;

}

// Display the final page
$tpl->parse("FINAL", "main");
$tpl->FastPrint();

?>

98 Chapter 3 / Creating Web-Based Server Interfaces

And our new ftusers.php (formally users.php):

ftusers.php

<?php
function showUsers()
{

global $tpl;

// connect...
$dbh = mysql_connect("localhost", "root", "");

// select the database...
mysql_select_db("phptest", $dbh);

// fetch all the users...
$results = mysql_query("SELECT * FROM users ORDER BY name", $dbh);
while($row = mysql_fetch_array($results))
{

$tpl->assign("USER_ID", htmlspecialchars($row["id"]));
$tpl->assign("USER_NAME", htmlspecialchars($row["name"]));
$tpl->assign("USER_AGE", htmlspecialchars($row["age"]));
$tpl->assign("USER_ALIAS", htmlspecialchars($row["alias"]));
$tpl->assign("USER_PASSWORD", htmlspecialchars

($row["password"]));
$tpl->parse("TABLE_ROW", ".userlist_row");

}

mysql_close($dbh);

$tpl->parse("MAIN_CONTENT", "userlist");
}

function addUser()
{

$id = $_GET["id"];

if($id != "")
{

$dbh = mysql_connect("localhost", "root", "");
mysql_select_db("phptest", $dbh);

$results = mysql_query("SELECT * FROM users WHERE id =
'$id'", $dbh);

if($row = mysql_fetch_array($results))
{

$tpl->assign("USER_ID", htmlspecialchars($row["id"]));
$tpl->assign("USER_NAME", htmlspecialchars($row["name"]));
$tpl->assign("USER_AGE", htmlspecialchars($row["age"]));
$tpl->assign("USER_ALIAS", htmlspecialchars

($row["alias"]));
$tpl->assign("USER_PASSWORD", htmlspecialchars

($row["password"]));
}

Chapter 3 / Creating Web-Based Server Interfaces 99

mysql_close($dbh);

$tpl->assign("FORM_TYPE", "Edit");
$tpl->assign("SUBMIT_TEXT", "Save Changes");

}
else
{

$tpl->assign("USER_ID", "");
$tpl->assign("USER_NAME", "");
$tpl->assign("USER_AGE", "");
$tpl->assign("USER_ALIAS", "");
$tpl->assign("USER_PASSWORD", "");

$tpl->assign("FORM_TYPE", "Add");
$tpl->assign("SUBMIT_TEXT", "Add User");

}

$tpl->parse("MAIN_CONTENT", "adduser");
}

function doAddUser()
{

$id = $_POST["id"];

// connect...
$dbh = mysql_connect("localhost", "root", "");

// select the database...
mysql_select_db("phptest", $dbh);

// add the new user...
if($id == "")

mysql_query("INSERT INTO users VALUES (NULL,
\"".$_POST["name"]."\", \"".$_POST["age"]."\",
\"".$_POST["alias"]."\", \"".$_POST["password"].
"\")", $dbh);

else
{

// update the details...
mysql_query("UPDATE users SET name = \"".$_POST["name"]."\", age

= \"".$_POST["age"]."\", alias = \"".$_POST["alias"]."\",
password = \"".$_POST["password"]."\" WHERE id = '$id'",
$dbh);

}

// close the connection...
mysql_close($dbh);

// Redirect the page...
header("Location: mysqlcore.php");

}

function deleteUser()
{

100 Chapter 3 / Creating Web-Based Server Interfaces

$id = $_GET["id"];

// connect...
$dbh = mysql_connect("localhost", "root", "");

// select the database...
mysql_select_db("phptest", $dbh);

// delete the user...
mysql_query("DELETE FROM users WHERE id = '$id'", $dbh);

// close the connection...
mysql_close($dbh);

// Redirect the page...
header("Location: mysqlcore.php");

}
?>

There is little need for a screenshot for this example as it looks exactly
the same as it did before from the user’s point of view. There is nothing
new as far as FastTemplate goes in this final example; however, it
should put you in the right direction for structuring your web-based
interfaces.

Summary

In this chapter we learned how to set up an Apache server, install
PHP4, and the basics of creating a web-based interface to a MySQL
database. With this knowledge it is possible, with experimentation, to
create complete administration tools for your online games so that they
can be administered from a standard web site. Additionally, you can dis-
play player statistics and other such information on your site — or even
go as far as creating an online community site for your game. In the
next chapter, we move away from databases and web programming and
proceed by looking into TCP/IP.

Chapter 3 / Creating Web-Based Server Interfaces 101

This page intentionally left blank.

Chapter 4

Introduction to
TCP/IP

Introduction

Modern computer games take advantage of the Internet, the world’s
largest network, more and more every day. If we want to use the full
potential of it in a game, we must understand how the Internet works.
It doesn’t help much if we can write flawless code but don’t get the the-
ory right. This chapter introduces the TCP/IP protocol and teaches how
to write TCP/IP applications, or more accurately games, using the
sockets application program interface (API).

What Is a Protocol?

To fully understand what TCP/IP is, we must understand what a net-
work protocol is. Basically, a network protocol is the language that two
or more computers use when they share information with each other.
Naturally, all the computers must speak the same language to make the
information flow between them. Imagine talking to someone who
speaks a different language. You probably will not understand anything
this person says to you. This would be the same as two computers
using different protocols to communicate with each other. One com-
puter simply will not understand what the other is trying to send to it.
Hence, no information is shared between them.

103

A protocol defines the rules of communication and the format of the
data. Protocols are standards that work on different kind of computers.
This means that if two computers can be physically connected in a net-
work, they can share information no matter what operating system
they are running or even what type of computers they are — if they
use the same protocol.

OSI Model

The International Organization for Standardization (ISO) developed a
model for data communications in the late 1970s called the Open Sys-

tems Interconnection (OSI) model. This model is the standard for all data
communications, and it also defines the basics of other standards. The
model is based on seven layers, all of which have their own unique area
of the data communication process. These layers are connected to each
other one by one. Between two layers is an interface that these layers
use to work with each other. OSI defines the layers’ function and inter-
face. It does not define how the layers are created. This makes it easy
to create new data communication solutions based on the OSI model.
But more importantly, it makes it easy to modify the existing ones.
Because of this, we have the ability to choose from many different
options to act on one layer. A good example is TCP and UDP, which are
described later in this chapter. These two protocols belong to the trans-
port layer, and we can choose which one to use in our application. We
don’t have to worry about anything extra, because the interface
between the transport layer and the two other layers connected to it
makes sure the data flows correctly. Figure 4-1 shows the OSI model
layers and their order.

OSI Model Layers

104 Chapter 4 / Introduction to TCP/IP

Figure 4-1
OSI model
layers

� Layer 1: Physical: The first layer takes care of all the physical
data transfers. It includes all the physical electronic devices such
as circuits, cables, and connectors. Basically it defines the medium
to be used in the data transfer.

� Layer 2: Data Link: The second layer consists of our computer’s
network interface card and the device driver. The data is put into
frames that are checked for errors and fixed if any errors exist. As
game developers we should not be too concerned about this layer,
because if the hardware can do normal networking, we have no
problems.

� Layer 3: Network: The third layer is taken care of by the
Internet Protocol (IP). It addresses the packets and frames and
routes them to the correct address over subnets. More about IP
later in this chapter.

� Layer 4: Transport: Layer four defines the method of data trans-
fer. Depending on the method, the data is checked for errors, big
packets are repackaged into smaller packets, and care is taken that
the data is sent and received correctly. These features vary from
method to method. This layer is the most interesting layer for the
network programmer, as TCP and UDP, which are described later
in this chapter, belong to this layer.

� Layer 5: Session: The fifth layer is fairly simple. It defines how
two computers establish and end a session. It also takes care of the
session’s synchronization, and defines when a computer can trans-
fer data and when it can receive data.

� Layer 6: Presentation: The sixth layer takes care of possibly
compressing and/or encrypting data. It defines what the data looks
like when it is being transferred.

� Layer 7: Application: The seventh layer defines the network
application, such as file transfers or e-mail.

A good example of the usage of the OSI model is a normal phone con-
versation. The telecommunication companies provide us layer 1 — the
cables and connectors through which the conversation is transferred
from one place to another. Other companies take care of layer 2 — they
build phones for us. Telephone companies’ switches belong to layer 3.
They direct the call to the correct place. Our phones use the method of
transfer used by the switches and other phones to make our voice
move from one place to another. This is layer 4. We are on layer 5 when
we dial the number to call and the other end’s phone rings. Modern
phones modulate our speech using a method called pulse code modula-
tion (PCM), which belongs to layer 6. Now we have a complete phone
conversation (layer 7).

Chapter 4 / Introduction to TCP/IP 105

Internet Protocol

The protocol used in Internet communications is called TCP/IP. As the
name implies, it is divided into two layers. These layers are part of the
Open Systems Interconnection (OSI) model. See the section titled “OSI
Model” for a description of the OSI model. Transmission Control Proto-

col (TCP) is part of the transport layer of the OSI model, and Internet

Protocol (IP) is part of the network layer. TCP/IP is a protocol suite that
has more members than the name suggests. One important member is
another protocol from the transport layer — User Datagram Protocol

(UDP). Both TCP and UDP are connected to the IP protocol.
Because the OSI model is based on layers, it is easy to develop

better and better network solutions by just replacing one layer with a
new, better one. We can change our network interface card (NIC), driv-
ers, or network connection type, or we can develop a better protocol.
All of these are happening all the time all around the world. Companies
develop new NICs and people buy them. The same companies develop
new drivers for their cards and people install them on their computers.
For some people, this is not enough — they want better Internet con-
nections. Also, the Internet Protocol is improving. The current version
is IPv4, but the next public version is IPv6.

Requirements of the modern computer culture grow every day. As
computers get faster and faster, people are buying more and more com-
puters. But the reason people buy computers is not because they are
fast. The reason is the Internet. Imagine what an average computer
user did with his or her computer in the 1970s or 1980s. Word process-
ing was likely one of the most common reasons for buying a computer
then. Back then, average users had not even heard of the Internet. But
even if they had, they didn’t dream of ever using it at home. Nowadays
people need computers for everything. Or at least they think they do.
Getting an Internet connection is very easy now and even fairly cheap,
so there really is no point in not getting one. This has led to problems.
The number of free IP addresses is running out quickly as companies
reserve addresses for themselves and individuals reserve their own IPs
— not necessarily for all the time, but at least for the time they are
online.

Demand for a good network system for universities was increasing
in the U.S. in the 1960s. This led to the development of IPv4 during the
1970s. Its addresses consist of four decimal dotted bytes, for example,
192.168.0.1. But because the human mind is better with names than
numbers, some IP addresses are given names, for example,
www.huntedcow.com. A Domain Name Service (DNS) then looks up the
name and the corresponding IP address number.

106 Chapter 4 / Introduction to TCP/IP

The addresses are divided into subnets — class A, class B, and class
C. Class A means that the first byte of the address is used to define the
subnet. The very first bit is set to 0 to identify that it is a class A
address. This bit is taken from the network byte, so only the remaining
seven bits are used for identifying the network. The last three bytes
are used to define the address itself. In class B, the first two bytes
define the subnet and the other two the address. The first two bits of a
class B address are 1 and 0, leaving 14 bits for the network part. In
class C, the first three bytes define the subnet and the last byte the
address. The first three bits of class C addresses are 1, 1, and 0, and the
next 21 bits are used for the network part. There are about 16,000,000
class A IP addresses, all of which are in use already. Class B consists of
about 65,000 addresses and class C has 254 addresses. The whole
address space of IPv4 is about 4 billion addresses. While 4 billion is a
big number, it is not big enough for IP addresses in the future.

Class D addresses are multicast addresses. The first four bits are the
identifier bits. On a class D address they are 1, 1, 1, and 0. Multicast
defines a group of IP addresses. So when you send something to a
multicast address, you are not sending to a single computer but a group
of computers. Class E addresses are reserved for future use. Figure 4-2
shows the different address classes and how their data space is divided.

The solution for the problem is IPv6. Among other improvements, it
provides a 128-bit addressing system that increases the address space
so much that we would need to colonize new worlds to use them all. At
least that’s the way it looks like right now. Only time will tell if it is
true.

IPv6 was developed in the 1990s and will most likely go into use
during the next decade. Because of this, it is a good idea to prepare for

Chapter 4 / Introduction to TCP/IP 107

Figure 4-2
Address
classes

it now. There’s no point in making a network application that may not
work tomorrow. Of course, IPv6 is compatible with IPv4 to a certain
point, but to be absolutely sure we should develop our applications to
be protocol independent from the beginning. This book teaches you
how to do so.

Introduction to the Transport Layer

As we have already learned, the TCP/IP protocol suite consists of two
layers of the OSI model — network and transport. The transport layer
is as important to TCP/IP as the network layer. For the network pro-
grammer, it is the most interesting part. When we write network
applications, we write commands for the transport layer.

In Internet communications using TCP/IP, the transport layer is
either Transmission Control Protocol (TCP) or User Datagram Protocol
(UDP). Sometimes people just say TCP when they really mean TCP/IP,
so that may be confusing if you do not know the context.

NOTE We can also use raw sockets to get direct connection in our
code to the Internet Protocol, bypassing TCP and UDP. However, this
is beyond the scope of this book.

Transmission Control Protocol

Transmission Control Protocol is a connection-oriented protocol. This
means that every time we want to communicate with a remote host, we
must first establish a connection. Once we have established a connec-
tion, we do not have to worry about directing the messages we send to
the correct place. When we are done with the connection, we must
close it. TCP is also a reliable protocol. It makes sure the other end
receives the messages we send, and it handles such things as dupli-
cated packets.

Sometimes when a packet is sent to the network, it may get lost for
a while. This may happen, for example, if a router is experiencing some
problems. The packet gets stuck on the router and so the receiving
host never sends a confirmation that the packet has reached its destina-
tion. The sending host assumes that the packet is lost forever and
retransmits it after a certain time. This new packet may find another
route to the receiving host, while the original packet is still stuck on
the router. If the router starts working normally again, it routes the
packet to the correct place and the receiving host may receive the same
packet again. TCP notices the duplicate packet and destroys it, as it is
not needed anymore.

108 Chapter 4 / Introduction to TCP/IP

User Datagram Protocol

Unlike TCP, User Datagram Protocol is a connectionless protocol. No
actual connection is established between the two communicating hosts.
This means that you cannot say when a connection is open or closed;
you just communicate with the other host by sending it data and wait-
ing for data back. The sending host must define the target address
every time it sends something. When a host receives a message, it
knows where the message came from, and therefore it can transmit
something back to the remote host. UDP is not reliable, as it does not
ensure that the transmission is received. It also does not take care of
duplicates. However, duplicates are not that common with UDP
because the sending host won’t retransmit anything if the message is
not received — simply because it does not care. UDP can be used in
applications that need the best possible efficiency but very little reli-
ability. Computer games fall into this category, and that is why UDP is
so important to us.

UDP can be made reliable, but this requires that we write the
needed checking algorithms ourselves. Some checking is always good,
but no one forces us to make any.

Ports

Taking into account that most network application servers today are
very simple, it would be foolish to make a network server run only one
service. A game server may require all of the server’s resources, so
there are exceptions too. But how can we identify the service we want
to use if the server is running dozens of services? We cannot connect
every service one by one and check to see if it is the one we want, as
this may take a long time. Additionally, some services may seem like
the one we are looking for but are not. Therefore, we need to give each
service a number that we define when we are connecting to it. These
numbers are called port numbers.

The port number is a 16-bit value, so there are 65,535 possible ports
available (there is no port 0 — therefore, 216 –1). Actually, available
ports are not that straightforward. Ports from 1 to 1023 are so-called
well-known ports, and thus we cannot use them for our servers. These
ports are reserved for common network services such as FTP (port 21)
and daytime server (port 13). Ports from 1024 to 65535 are generally
free to be used, but it is a good idea to check that the port we are about
pick is not used by any other known service. The Internet Assigned
Numbers Authority (IANA) records used ports if they are well known
enough.

Chapter 4 / Introduction to TCP/IP 109

TCP and UDP ports are unique. For example, TCP port 1024 is not
the same as UDP port 1024. Usually, if a port number is registered by
the IANA, it is registered for both protocols at the same time, even if
the application does not use both protocols at that time.

We need to define the port number only for the server. Clients usu-
ally use so-called ephemeral ports, which we have no control over. The
kernel of the operating system chooses them for us. The range of
ephemeral ports varies from platform to platform, as shown in Figure
4-3. We can also assign an ephemeral port for a server, but only in a
special case, which is beyond the scope of this book.

Not all ports are always open to use, even if they are not well-known
ports. Firewalls block most ports on servers to keep unwanted people
out of the server, so the server’s administrator must open a port on the
firewall before it can be used. There are different kinds of firewalls
available, so consult your server’s administrator about the ports.

Introduction to Sockets

Sockets API is a programming interface that we use to write network
applications. It is a multiplatform API, so we can make different operat-
ing systems communicate with each other using sockets. This book
teaches you how to make your network code work on multiple plat-
forms without any changes to the code.

There is no clear definition for a socket. Different people have differ-
ent opinions about them, but basically a socket is a pipe between two
computers on a network through which data flows. It is not the physical
cable or anything concrete like that. A socket exists only in the world of
bits and bytes. The two computers each have their own unique socket,
and these sockets can be identified as the two ends of the pipe. Request
for Comment 147 (RFC147) defines what a socket is for the ARPA net-
work. As the ARPA network is the predecessor of the Internet, this
documentation applies to Internet sockets as well.

110 Chapter 4 / Introduction to TCP/IP

Figure 4-3

In computer memory, sockets are 32-bit numbers. So when a new
socket is created, it is given a unique number that defines the socket on
the local computer.

Socket Types

There are two kinds of sockets available: stream sockets and datagram
sockets. A stream socket is a connection-oriented socket; thus, a con-
nection has to be established before it can send or receive data. Stream
sockets use the TCP transport protocol. A datagram socket is a
connectionless socket. Datagram sockets use the UDP transport
protocol.

You may think that a connection must be established before usage.
This is not as straightforward as it sounds, though. We can think of this
in terms of multiple levels of connections. The last level is when we
have established the connection between two stream sockets. Before
that there is a level where there is no real connection, but the two
hosts know of each other and their addresses. They can sort of throw
things at each other and hope that they reach their destination. With an
established connection, however, the two hosts could throw the things
into a pipe (the connection between the two hosts), and the probability
of receiving the data would be much higher than without a connection.

In a stream socket, the data flows constantly in the socket, as the
name implies. It works like a stream of water, except that it moves in
both directions. Stream sockets are reliable in many ways. Both sides
know if the other side disconnects or crashes and cannot receive any-
thing anymore. Every packet is monitored to see if it reaches its
destination. If a packet has not reached its destination in a certain time,
it will be retransmitted.

In a datagram socket, the data is transmitted in datagrams. This
means that whenever there is something to send, the data is sent to the
address defined. When there is nothing to send, no data flows between
the two hosts. If one side crashes, the other side will not notice unless
a system has been built that checks if the other side is alive. Datagram
sockets are not reliable. The packets are not monitored by TCP/IP to

Chapter 4 / Introduction to TCP/IP 111

Figure 4-4

see if they reach their destination. If we want, we can create our own
monitoring system, but if we use UDP for the monitoring system as
well, the monitoring system is also not reliable. As this may get very
confusing, some people use only stream sockets.

Address

Each socket has its own address information. We can create a socket on
any port as long as the port is free and it is okay to choose that port. We
can also define the IP address to connect to for every socket. Usually, a
single socket is not enough on a server application. We need one socket
to listen to the incoming clients and another socket to handle the cli-
ent/server communication. At the same time, the listening socket is
still listening for clients and creates a new socket for all other clients as
well. This type of server is called a concurrent server. If the server uses
only one socket to do all the communication, it can communicate with
only one client at a time. This type of server is called an iterative server.
When creating computer games, we need to process multiple clients at
once, so a concurrent server is the only way to do it. This book covers
both iterative and concurrent servers.

Platforms

The sockets API works on many platforms, and thus we should know
how to take advantage of it. This section covers Unix (Linux) and Win-
dows versions of the API; once we are done, we will know how to write
code that works on both platforms.

The sockets API was originally developed for the Unix operating
system. The 4.2BSD (Berkeley Software Distribution) system had the
first version of sockets in 1983. At the same time, TCP/IP was released
widely to the public for the first time. The API has developed from
these beginnings. Many Unix platforms use the same networking code
as BSD does, but others, for example Linux, do not. Linux’s network
code has been written from scratch, but this does not mean these dif-
ferent implementations would not be compatible. Linux is a free, very
popular Unix-based operating system. All Unix code in this book has
been developed and tested on a Linux system.

Many non-Unix operating systems have the sockets API as well.
For example, Microsoft Windows has its own sockets library called
WinSock (Windows Sockets). WinSock is compatible with BSD sockets,
but it also has many features that the BSD version does not have.
Because of operating system differences, there are some noticeable dif-
ferences in the APIs, but they do not interfere with compatibility when
connecting two computers. The latest version of WinSock is WinSock2.

112 Chapter 4 / Introduction to TCP/IP

WinSock2 software development kit (SDK) is available on the Internet.
This SDK is required for writing applications that use WinSock.

History of WinSock

The Windows sockets API was born October 10, 1991, at Interop ’91 in
San Jose, California. A committee was established to design a specifica-
tion for a sockets library for the Windows operating system from a pro-
posal by Martin Hall of JSB Corporation. There have been over 40
companies involved in the design of WinSock. WinSock is not the prop-
erty of Microsoft, although it is an important part of Windows nowa-
days. It was developed by independent sources who were interested in
taking part of this project. On January 20, 1993, the specification for
WinSock 1.1 was published. This version had support for TCP/IP only.

WinSock2 was published in 1996. It provided support for multiple
transport protocols, such as Novell IPX/SPX and Digital’s DECNet, and
officially supported the OSI model. Version 2 also includes features like
multicasting and Quality of Service (QoS), both of which are explained
later in this book.

WinSock is currently compatible with version 4.3 of the Berkeley
Software Distribution sockets.

Summary

Because we are writing games, we consider WinSock essential. The
fact is that Windows is the operating system for which most games
nowadays are written, and we make no exception here. But why do we
need Unix code too? We could write the game for Unix platforms, but
the main reason is the server, as most network games use Unix as the
platform for their servers. There are many reasons for this, but the two
most important reasons are the great stability of all Unix systems and
easy remote controlling. Every Unix system can be controlled
remotely, so we do not actually have to sit down in front of the server
every time we want to control the server. Using Windows 9x as the
server platform is out of the question because of certain restrictions.
Windows NT and Windows 2000 are also good options for the server
platform, as they do not have the same restrictions as Windows 9x
systems because they were designed for different kinds of usage. In
the end, it is up to you which operating system you wish to use. But
remember, the client and the server can be run on different platforms.

Chapter 4 / Introduction to TCP/IP 113

This page intentionally left blank.

Chapter 5

Basic Sockets
Programming

Introduction

The Unix sockets API does not require any extra initialization before
we can actually use the sockets. However, this is not the case for Win-
dows sockets. What we need to initialize is the WinSock 2 dynamic-link
library (DLL) and then enumerate the available protocols. As this book
focuses only on the TCP/IP protocol, we only look for TCP and UDP
protocols. In this chapter, we learn the basic initialization functions of
WinSock. Then we see how to actually use them by creating an initial-
ization function that does all the necessary initialization.

WinSock Initialization

This section explains the basics of WinSock initialization.

WSAStartup Function (Win32)

int WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData);

The WSAStartup function is used to initialize the WinSock API. As
the first parameter, we must provide the version number we request. It
is a word value, and so we must fill the variable using the MAKEWORD
macro. MAKEWORD creates an unsigned 16-bit integer from the two

115

unsigned characters we give it. The second parameter is a pointer used
to get the data from the WinSock DLL. The data is stored in a
WSADATA data type.

The function returns 0 if everything went fine. If not, it returns one
of the non-zero values listed in Table 5-1.

Table 5-1: WSAStartup function return values

WSASYSNOTREADY The network subsystem is not ready.

WSAVERNOTSUPPORTED The version we requested is not supported.

WSAEINPROGRESS A blocking WinSock 1.1 operation is in progress, or the
service provider’s callback function is in progress.

WSAEPROCLIM The limit of WinSock tasks has been reached.

WSAEFAULT WSAData is not a valid pointer.

WSACleanup Function (Win32)

int WSACleanup(void);

We use WSACleanup to uninitialize the WinSock API. This function
will unregister the WinSock DLL used by our application. Windows
keeps a record of all the DLLs used by applications and updates the ref-
erence count of each DLL. If the count is higher than zero, Windows
knows that this DLL is used by an application and therefore it is kept
open in the system memory. If the reference count is zero, the DLL is
not open.

It is our responsibility as programmers to keep Windows aware of all
the registered DLLs. In other words, we must call WSACleanup at the
end of every WinSock application if the WinSock API has been
initialized.

The return value is 0 if the operation was successful. On error, the
return value is SOCKET_ERROR, but we can get a more accurate error
value by using WSAGetLastError. Table 5-2 lists the return values
of the WSACleanup function.

Table 5-2: WSACleanup function return values

WSANOTINITIALIZED WinSock API is not initialized.

WSAENETDOWN A network subsystem error occurred.

WSAEINPROGRESS A blocking WinSock 1.1 operation is in progress, or the
service provider’s callback function is in progress.

116 Chapter 5 / Basic Sockets Programming

WSAEnumProtocols Function (Win32)

int WSAEnumProtocols(LPINT lpiProtocols, LPWSAPROTOCOL_INFO lpProtocolBuffer,
LPDWORD lpdwBufferLength);

This function is used to enumerate the available protocols on the local
computer. The first parameter is a pointer to a list of protocols we wish
to look for. We must create an integer list of the protocols. In this book
we use only TCP and UDP, so we put only these two in the list:

� IPPROTO_TCP — Transmission Control Protocol

� IPPROTO_UDP — User Datagram Protocol

The second parameter is a pointer to a WSAPROTOCOL_INFO buffer
that is filled when the function is run.

The third parameter is a value-result parameter. It is used to tell the
function how big a buffer we need for the protocols, but the function
may change it if it is not big enough. This is important, because when
we start enumerating the protocols, we actually run this function twice.
The first time, we do not fill the first two parameters because all we
need to do is get the buffer size. We provide a pointer to a zero-size
buffer so the function will increase the size for us. The next time we
run the function, we give it all the needed parameter info, including the
buffer size we got from the first call to WSAEnumProtocols.

WinSock Initialization Function

The following code shows us how to initialize WinSock API. It is a func-
tion from the network library we will create later. But as this function is
essential for getting WinSock ready to be used, we introduce it here.
After the code listing, we will go through the important parts to see
what is really happening.

int dreamSock_InitializeWinSock(void)
{

WORD versionRequested;
WSADATA wsaData;
DWORD bufferSize = 0;

LPWSAPROTOCOL_INFO SelectedProtocol;
int NumProtocols;

// Start WinSock2. If it fails, we do not need to call WSACleanup()
versionRequested = MAKEWORD(2, 0);
int error = WSAStartup(versionRequested, &wsaData);

if(error)
{

return 1;

Chapter 5 / Basic Sockets Programming 117

}
else
{

// Confirm that the WinSock2 DLL supports the exact version
// we want. If not, call WSACleanup().
if(LOBYTE(wsaData.wVersion) != 2 || HIBYTE(wsaData.wVersion)

!= 0)
{

WSACleanup();
return 1;

}
}

// Call WSAEnumProtocols to figure out how big of a buffer we need
NumProtocols = WSAEnumProtocols(NULL, NULL, &bufferSize);

if((NumProtocols != SOCKET_ERROR) && (WSAGetLastError() !=
WSAENOBUFS))

{
WSACleanup();
return 1;

}

// Allocate a buffer; call WSAEnumProtocols to get an array of
// WSAPROTOCOL_INFO structs
SelectedProtocol = (LPWSAPROTOCOL_INFO) malloc(bufferSize);

if(SelectedProtocol == NULL)
{

WSACleanup();
return 1;

}

// Allocate memory for protocol list and define what protocols to
// look for
int *protos = (int *) calloc(2, sizeof(int));

protos[0] = IPPROTO_TCP;
protos[1] = IPPROTO_UDP;

NumProtocols = WSAEnumProtocols(protos, SelectedProtocol, &bufferSize);

free(protos);
protos = NULL;

free(SelectedProtocol);
SelectedProtocol = NULL;

if(NumProtocols == SOCKET_ERROR)
{

WSACleanup();
return 1;

}

118 Chapter 5 / Basic Sockets Programming

return 0;
}

First, we use the MAKEWORD macro to fill the WORD version-

Requested with the information we want. In this case, we want to
check that the version number of WinSock DLL is 2.0, so we fill the
word with bytes representing 2 and 0. Then we run WSAStartup to
start initializing the WinSock API.

versionRequested = MAKEWORD(2, 0);
int error = WSAStartup(versionRequested, &wsaData);

The function fills wsaData for us. We check the wsaData’s
wVersion member (WORD) to see what version the DLL supports. We
use the LOBYTE and HIBYTE macros to check the two bytes of the
WORD. If the bytes do not match the version number we want, we clean
up WinSock and return 1 to indicate there was an error.

if(LOBYTE(wsaData.wVersion) != 2 || HIBYTE(wsaData.wVersion) != 0)
{

WSACleanup();
return 1;

}

Next, we need to find out how big a buffer we need for the protocols.
We use WSAEnumProtocols for this. During the initialization pro-
cess, we run this function twice. The first time we run it, we do not
provide any parameters for it other than the buffer size parameter. The
function will increase the buffer size for us if it is too small. We start
with a zero size buffer, so the first time we run the function it will defi-
nitely fail. We want this function to fail for now. This means that if the
function does not return SOCKET_ERROR, something is wrong, proba-
bly because the buffer size is too small if it is 0.

Then we check that the last error occurred because the buffer was
too small. We do this by using the WSAGetLastError function. If the
buffer was too small, the last error message was WSAENOBUFS. If it
was something else, there is something else wrong and we should quit
the initialization process.

NumProtocols = WSAEnumProtocols(NULL, NULL, &bufferSize);

if((NumProtocols != SOCKET_ERROR) && (WSAGetLastError() != WSAENOBUFS))
{

WSACleanup();
return 1;

}

Here is how we define the protocols we are looking for. First we allo-
cate memory for the protocol list quite normally, and then simply fill
the list with protocols we want. Because we only want the two TCP/IP

Chapter 5 / Basic Sockets Programming 119

protocols, that is what we put in the list. The order of the list members
is not important.

int *protos = (int *) calloc(2, sizeof(int));
protos[0] = IPPROTO_TCP;
protos[1] = IPPROTO_UDP;

Finally, we get to enumerate the actual protocols. We now have all the
information we need for the second call to WSAEnumProtocols. For
the first parameter we provide the protocol list; for the second, the pro-
tocol info structure pointer; and for the last, the buffer size. The return
value is the number of protocols it found. The return value is SOCKET_
ERROR if something is wrong. We do not need to check what actually is
wrong. It is enough to know that something did go wrong, and we stop
initializing if this happens.

NumProtocols = WSAEnumProtocols(protos, SelectedProtocol, &bufferSize);

NOTE WSAEnumProtocols looks for protocols installed on your
Windows operating system. If you do not have TCP/IP protocols
installed on your operating system, WSAEnumProtocols will not
find them.

Error Handling

There is one WinSock function in the previous code that we have not
discussed yet. This is the WSAGetLastError function, which is a
WinSock-only function.

WSAGetLastError Function (Win32)

int WSAGetLastError(void);

This function retrieves the value of the last error that occurred in the
last Windows sockets operation function. Some functions only indicate
that an error occurred but do not give the actual error value. This func-
tion is used to get the error value.

Unix does not have a function to receive the last error that occurred.
It does, however, have the global variable errno that works just like
the return value of WSAGetLastError, but you do not have to fetch
it by running a function. The error values on different platforms may
have equal integer values (they also may differ), but their constant
names usually are not the same. For example, WinSock error values
have the prefix “WSA.”

120 Chapter 5 / Basic Sockets Programming

Sockets Data Types

Sockets have more than one address data type because different
protocols require unique information. We can still write protocol-
independent code thanks to the generic address data types. These data
types are explained here.

Platform-specific Data Types

As we will be writing our code for multiple platforms, we must be
aware of different data types that correspond to the same thing on dif-
ferent platforms. We can easily define new data types and rename the
required data types to match the other platform’s types. This can be
done because usually only the data type name is different; the actual
data is the same. Table 5-3 shows two data types that have different
names on Unix and Win32 but are really the same thing.

Table 5-3: Equivalent data types

Data Type Unix Win32

Address length data type socklen_t int

Socket descriptor data type int SOCKET

From now on we use the more informative data type name in the text
and all source code examples. For socket address length, we use
socklent_t instead of int, and for socket descriptors, we use
SOCKET instead of int.

We learn how to create these new definitions for our data types in
Tutorial 2, “Creating Your Network Library.”

Address Structures

The address information of the sockets is stored in structures. Natu-
rally, IPv4 and IPv6 have their own structures.

IPv4 Address Structure

The following code shows the structure for IPv4:

struct in_addr
{

in_addr_t s_addr; // 32-bit IP address
};

Chapter 5 / Basic Sockets Programming 121

struct sockaddr_in
{

uint8_t sin_len; // structure length: 16 bytes
sa_family_t sin_family; // protocol family: AF_INET
in_port_t sin_port; // 16-bit port number
struct in_addr sin_addr; // 32-bit IP address
char sin_zero[8]; // Not used

};

Let’s take a look at the structure members. The structure length vari-
able is handled by the kernel, so we do not need to worry about it. The
protocol family for IPv4 addresses is always AF_INET. The port num-
ber is stored in a 16-bit unsigned integer in network byte order. The IP
address is stored in a 32-bit unsigned integer, also in network byte
order. It is not stored in the normal dotted decimal format. We discuss
how to get the dotted decimal format out of the 32-bit unsigned integer
later.

IPv6 Address Structure

This code shows the IPv6 address structure:

struct in6_addr
{

uint8_t s6_addr[16]; // 128-bit IP address
};

#define SIN6_LEN // required for the compiler

struct sockaddr_in6
{

uint8_t sin6_len; // structure length: 24 bytes
sa_family_t sin6_family; // protocol family: AF_INET6
in_port_t sin6_port; // 16-bit port number
uint32_t sin6_flowinfo; // 32-bit flow label and priority
struct in6_addr sin6_addr; // 128-bit IP address

};

SIN6_LEN must be defined if the length member is supported by the
system. The structure length of an IPv6 address is 24 bytes, but the
kernel takes care of this. The protocol family for IPv6 addresses is
AF_INET6. The port number is a 16-bit unsigned integer, just like the
IPv4 ports. The IPv6 address structure has a member that is not
included in the IPv4 address structure. It stores the flow label and pri-
ority values. The first 24 bits are used for the flow label, the next 4 bits
are for the priority, and the remaining 4 bits are reserved for future use.
The IP address is stored in 16 8-bit unsigned integers.

122 Chapter 5 / Basic Sockets Programming

Generic Address Structure

Having more than one protocol family that can be used creates a small
problem. Because IPv4 and IPv6 have their own address structures, we
cannot pass either of the structures as a pointer to any socket functions
that use the address structure as a parameter, and still remain protocol
independent. That is why we have a generic address structure, which is
shown below.

struct sockaddr
{

uint8_t sa_len; // structure length
sa_family_t sa_family; // protocol family
char sa_data[14]; // the address (either IPv4 or IPv6)

};

By typecasting the protocol-specific address structures into this
generic structure, we can use any version of address structures in any
of the socket functions. Of course, the functions must have this generic
structure as the parameter instead of the protocol-specific ones.

Typecasting means that you are providing a mask for your pointer in
the memory. This mask is used to divide the block of memory into the
variables that are stored there. There is no need to typecast a pointer if
the data type we want to use is the original data type. The beginning of
the data types must match the generic one. But as we see in the proto-
col-specific address structures and the generic address structure, only
the first two members of the structures match. The third member in
the generic structure is chars only, and these chars are used to store
the actual address information. The function itself must understand
this. Figure 5-1 shows an example of how the typecast “mask” works.
In this example, the first two members of the cast structure are 8-bit
integers, or shorts (one X in the memory block means 8 bits), and after
that there are only characters that hold the data in a format that can be
transformed into any data type.

TIP As you have probably already noticed, typecasting is a useful
way to make code work with various data types. It is a good idea
to take advantage of it whenever possible.

Chapter 5 / Basic Sockets Programming 123

Figure 5-1
Typecasting

Basic Sockets Functions

There are some functions in the sockets API that nearly all sockets
applications use at some point. These functions are explained in this
section.

socket Function (Unix, Win32)

SOCKET socket(int family, int type, int protocol);

This function creates a socket with the provided information. This func-
tion only creates the descriptor of the socket; it does not really start
using any port or any IP address yet. If you are familiar with Unix pro-
gramming, you may notice that the socket descriptors are just like file
descriptors on Unix.

The first parameter (int family) specifies the protocol family. It
can be one of these:

� AF_INET: IPv4 protocols

� AF_INET6: IPv6 protocols

� AF_ROUTE: Routing sockets

There are more options for this parameter on different platforms. We
cover only the first two, AF_INET and AF_INET6, in this book.

The second parameter (int type) defines the socket type, which
can be one of the following:

� SOCK_STREAM: Stream socket

� SOCK_DGRAM: Datagram socket

� SOCK_RAW: Raw socket

This book covers only SOCK_STREAM and SOCK_DGRAM.
SOCK_STREAM is used for TCP sockets and SOCK_DGRAM for
UDP sockets.

The third parameter (int protocol) is set to 0 when using either
stream or datagram sockets.

Win32 return values:

� Success: A nonnegative descriptor (integer)

� Failure: INVALID_SOCKET

Unix return values:

� Success: A nonnegative descriptor (integer)

� Failure: –1

124 Chapter 5 / Basic Sockets Programming

bind Function (Unix, Win32)

int bind(SOCKET s, const struct sockaddr *addr, socklen_t addrlen);

The bind function makes your socket have its own address informa-
tion, i.e., the IP address and the port number. The function binds the
local address information to each socket. You cannot define a non-local
IP address when calling bind, but you can define any port number
(keeping in mind that not all ports are available ports). This function is
usually used right after the call to the socket function.

To listen to incoming events on a certain port, you must bind the
port to the socket first. You cannot listen to incoming events if you
have not bound the socket to the port to be listened to. Both stream
and datagram sockets must be bound to an address before they can be
used. You do not have to bind a client’s local sockets, but it is okay to do
so.

The first parameter (SOCKET s) defines the unbound socket to be
bound. The socket must have been created with the socket function.
The second parameter (const struct sockaddr *addr) is a
pointer to a sockaddr address information structure. The third
parameter (socklen_t addrlen) is the size of the address informa-
tion structure.

The address you are about to bind may already be in use by another
application or by your own application. If this is the case, bind returns
the error value EADDRINUSE (Unix) or WSEADDRINUSE (Windows)
(the value must be retrieved by using the WSAGetLastError func-
tion in Windows and the errno variable in Unix). With certain socket
options we can still bind the address, even if it is already in use.

If you set the port number to 0, the operating system’s kernel will
choose an emphemeral port. Usually this is the first free ephemeral
port. Client applications use ephemeral ports because there really is no
need for us to know the port the client uses. The remote host the client
is sending data to can figure out the port itself.

If we have multiple network interface cards on our local host, we can
either choose the IP address for the socket ourself or we can make the
kernel choose it for us. To do this, we use the constant INADDR_ANY.

NOTE A single host can have multiple IP addresses if it has multiple
network interface cards. Usually only server machines have this kind
of arrangement.

If an error is encountered with the bind function, we must use the
WSAGetLastError function in Windows or the errno variable in
Unix to get the actual error value.

Chapter 5 / Basic Sockets Programming 125

Win32 return values:

� Success: 0

� Failure: SOCKET_ERROR

Unix return values:

� Success: 0

� Failure: –1

connect Function (Unix, Win32)

int connect(SOCKET s, const struct sockaddr *addr, socklen_t addrlen);

This function is used to connect a TCP client with a TCP server. We do
not need to know the client’s address information, hence there is no
need to call the bind function on the client before we call connect.
The kernel will do all the dirty work for us in this case. It chooses the
ephemeral port and retrieves the IP address information.

The first parameter (SOCKET s) defines the socket to connect. The
second parameter (const struct sockaddr *addr) must pro-
vide information about the server’s address: the IP address and port
number. If we fail to give the correct address information for the server,
the connection will fail. The third parameter (socklen_t addrlen)
is used to define the length of the address structure in bytes.

This function does not return before the TCP’s three-way hand-
shake is complete. If an error occurs before that, the function will
return. So when this function returns, we know that either the connec-
tion is established or it could not be established.

The client will wait a total of 75 seconds for the remote server to
respond to its SYN segment of the three-way handshake. If no response
is received during this time, the function returns an error. If the client
does receive a response to the SYN segment, but it is an RST (reset), it
means that the server machine is running but not waiting for connections
at the TCP port we specified. The function will return an error value.

These and any other specific error values must be retrieved by
using the WSAGetLastError function in Windows or the errno
variable in Unix.

Win32 return values:

� Success: 0

� Failure: SOCKET_ERROR

Unix return values:

� Success: 0

� Failure: –1

126 Chapter 5 / Basic Sockets Programming

listen Function (Unix, Win32)

int listen(SOCKET s, int backlog);

The listen function is used for connection-oriented sockets to set
the socket to listen for incoming connections. This means that it is not
used for UDP sockets. This function is called after the calls to the
socket and bind functions. This function must be called before the
accept function is called. This is a server-side function.

The first parameter (SOCKET s) must be a bound, unconnected
socket. The socket must have been created with the socket function,
and it must be bound with the bind function. The second and last
parameter (int backlog) defines the maximum number of connec-
tions allowed. This sounds very simple but in fact is not. First of all, all
operating systems have their own maximum for this. For example, Win-
dows NT 4.0 Server has a maximum backlog value of 100. Normally, on
operating systems that are not designed for server usage, the backlog
value is about 4 to 5.

The kernel keeps track of two connection queues: incomplete and
complete connections. The latter one is clear; they are the connections
that have been established all the way. This means that the TCP
three-way handshake is complete with them. The incomplete connec-
tions are connections that have the first part of the TCP three-way
handshake complete. On a packet level it means that the first SYN
packet from the client has been received by the server. The sum of
these two queues cannot exceed the backlog value.

After this function successfully returns, the used socket is called a
listening socket.

If the backlog value is set to be larger than the maximum of the
operating system, the value is silently set to the nearest valid value.
“Silently” means that there is no way to know about it; no error value
is returned. If the queue is full and there is an incoming connection,
listen will return ECONNREFUSED on Unix and WSAECONN-
REFUSED on Windows. These error values must be retrieved by the
WSAGetLastError function in Windows or the errno variable in
Unix.

Win32 return values:

� Success: 0

� Failure: SOCKET_ERROR

Unix return values:

� Success: 0

� Failure: –1

Chapter 5 / Basic Sockets Programming 127

accept Function (Unix, Win32)

int accept(SOCKET s, struct sockaddr *addr, socklen_t *addrlen);

This function is used to accept an incoming TCP connection. This func-
tion is run after the listen function has filled the completed
connections queue with at least one connection. When the queue is
empty and this function is run, the process is either put to sleep or
moves on to the next command, depending on the socket I/O option
(blocking or non-blocking). This is a server-side function.

The first parameter (SOCKET s) defines the socket that holds the
connection to be accepted. This must be a listening socket. The second
parameter (struct sockaddr *addr) is used to get the address
information of the client whose connection we are just about to accept.
This can be set to NULL if we are not interested in this information.
The third parameter (socklen_t *addrlen) is a value-result
parameter, which must be set to the size of the address structure
before calling accept. When the function returns, this parameter
holds the number of bytes allocated for the address structure by the
function. This can be set to NULL if we are not interested in this
information.

After accept successfully returns, the used socket is called a con-

nected socket.
The return value is a new descriptor for the socket if everything

went fine. The listening socket given to the function as a parameter
stays untouched. It is not removed, and its descriptor is not changed.
We can still listen for new incoming connections with the very same
socket. What we get from accept is a brand new connected socket.

If there was an error, accept returns an error value indicating it,
but to get accurate error values we use the WSAGetLastError func-
tion in Windows or the errno variable in Unix.

So if we have a TCP server that will serve multiple clients at once,
we create one listening socket and then spawn new connected sockets
for each connection.

Win32 return values:

� Success: A nonnegative descriptor (integer)

� Failure: INVALID_SOCKET

Unix return values:

� Success: A nonnegative descriptor (integer)

� Failure: –1

128 Chapter 5 / Basic Sockets Programming

close Function (Unix)/closesocket Function
(Win32)

int close(SOCKET s);
int closesocket(SOCKET s);

The Unix and Windows versions of this function have different names,
but the function is the same on both operating systems.

This function closes the TCP socket. Before actually terminating the
connection, TCP will send all queued data. We cannot send or receive
any more data even if the connection has not been terminated for good.
When all queued data is sent, TCP’s four-packet termination process
initiates. We can make this function work differently by adjusting
socket options. We discuss these options in Chapter 6, “I/O
Operations.”

The socket descriptor is returned to be reused. So after closing a
socket, we may encounter a socket with the same descriptor as the one
we closed. However, they have nothing do with each other. For exam-
ple, if we close a socket and then immediately create a new one, the
new socket must be initialized normally even if the descriptor is the
same as the one we just closed.

If an error occurs, we need to use the WSAGetLastError function
in Windows or the errno variable in Unix to retrieve the actual error
value.

Win32 return values:

� Success: 0

� Failure: SOCKET_ERROR

Unix return values:

� Success: 0

� Failure: –1

Input/Output Functions

There are four basic functions for sending/receiving data in the sockets
API — two for each operation. All four are explained in this section.

send Function (Unix, Win32)

int send(SOCKET s, const void *buf, size_t len, int flags);

This function is used to send data to a socket. The socket must be suc-
cessfully connected before this function can be used. This function is
usually used by stream (TCP) sockets only, but it is possible to use this

Chapter 5 / Basic Sockets Programming 129

with datagram (UDP) sockets too. The UDP socket must be connected
using the sockets connect function, but that is beyond the scope of
this book.

The first parameter (SOCKET s) is the socket to which we want to
send the data. It must be a connected socket. The second parameter
(const void *buf) is the data itself. It is a pointer to a buffer con-
taining the data we want to send. The third parameter (size_t len)
defines the number of bytes to send. We do not need to send the whole
data buffer (and it is not always even possible). The fourth and last
parameter (int flags) is used to set different flags (options) with
the current send process. These flags are temporary, so they must be
set every time they are required by a send process. We can OR various
flags together. Table 5-4 lists the possible flags.

HINT OR’ing is a bit-wise operation. Bit-wise operations are the
lowest level of operations available as computers work using bits —
1s and 0s. Because of this, they are also very fast and take very little
memory. I recommend learning more about bit-wise operations and
using them wherever possible.

Table 5-4: send/sendto flags

Flags Description Unix Win32

MSG_DONTROUTE Target host is locally connected to the
network. Do not look for the target host
from a routing table.

Yes Yes

MSG_DONTWAIT Set the current output non-blocking. Do
not wait for the output of data.

Yes No

MSG_OOB Send out-of-band data. Yes Yes

When send returns, it either returns the number of bytes sent or indi-
cates that an error occurred. We cannot send zero size data with TCP
protocol. If we get a 0 return value from send, it means that the other
host has closed the connection or the connection is broken. If there was
an error, we need to retrieve the actual error values by using the
WSAGetLastError function in Windows or the errno variable in
Unix. Even if send returns successfully, it does not mean that the
other end successfully received the data.

Win32 return values:

� Success: Number of bytes sent

� Failure: SOCKET_ERROR

130 Chapter 5 / Basic Sockets Programming

Unix return values:

� Success: Number of bytes sent

� Failure: –1

recv Function (Unix, Win32)

int recv(SOCKET s, void *buf, size_t len, int flags);

This function is very similar to the send function, but this time we are
receiving data instead of sending it. The parameters are very similar.

The first parameter (SOCKET s) is the socket we want to receive
the data. It must be a connected socket. The second parameter (void
*buf) is the data buffer. It is a pointer to a buffer where we want to
store the data. The third parameter (size_t len) defines the num-
ber of bytes to receive. The fourth parameter (int flags) works the
same way as in the send function. We can set temporary socket input
options here by OR’ing various options together or simply set one on.
Table 5-5 lists the input flags.

Table 5-5: recv/recvfrom flags

Flags Description Unix Win32

MSG_DONTWAIT Set the current output non-blocking. Do
not wait for the output of data.

Yes No

MSG_OOB Receive out-of-band data. Yes Yes

MSG_PEEK Peek at the incoming data. The data is
copied to the receive buffer, but it is not
removed from the incoming data queue.

Yes Yes

MSG_WAITALL Wait for all the data to be received before
returning.

Yes No

The return value of recv tells us how many bytes it received or, in
case of an error, an error value. If recv returns 0, the other side has
closed the connection or the connection is broken. If there was an error,
we need to retrieve the actual error values by using the
WSAGetLastError function in Windows or the errno variable in
Unix.

Win32 return values:

� Success: Number of bytes received

� Failure: SOCKET_ERROR

Chapter 5 / Basic Sockets Programming 131

Unix return values:

� Success: Number of bytes received

� Failure: –1

sendto Function (Unix, Win32)

int sendto(SOCKET s, const void *buf, size_t len, int flags, const struct
sockaddr *to, socklen_t addrlen);

Like the send function, sendto is also used to send data to a socket,
but with this function it is not necessary for the socket to be connected.
This is the function that is normally used for datagram (UDP) socket
output, but it can be used for stream (TCP) sockets too.

The first parameter (SOCKET s) is the socket to which we want to
send the data. The second parameter (const void *buf) is the data
itself. It is a pointer to a buffer containing the data we want to send.
The third parameter (size_t len) defines the number of bytes to
send. We do not need to send the whole data buffer (and it is not always
even possible). The fourth parameter (int flags) is used to set dif-
ferent options on with the current send process. These flags are
temporary, and so they must be set every time they are required by a
send process. We can OR various flags together. The flags listed in
Table 5-4 work with sendto also. The fifth parameter (const
struct sockaddr *to) is the address structure where we want to
send the data. The address structure must contain the IP address and
port. The sixth and last parameter (socklen_t addrlen) is used to
define the size of the address structure.

Similarly to the send function, sendto returns the number of
bytes sent or indicates that an error occurred. It is okay to send zero
size datagrams. When we send zero size datagrams, only the IP (v4 or
v6) header and the UDP header are sent, so sendto can return 0 and
still function normally. If there was an error, we need to retrieve the
actual error values by using the WSAGetLastError function in Win-
dows or the errno variable in Unix. Even if sendto returns
successfully, it does not mean that the other end successfully received
the data.

Win32 return values:

� Success: Number of bytes sent

� Failure: SOCKET_ERROR

Unix return values:

� Success: Number of bytes sent

� Failure: –1

132 Chapter 5 / Basic Sockets Programming

recvfrom Function (Unix, Win32)

int recvfrom(SOCKET s, void *buf, size_t len, int flags, struct sockaddr
*from, socklen_t *addrlen);

This function is usually used for datagram (UDP) socket input. It is
similar to the recv function, but we define the IP address and port to
read from as well as the socket.

The first parameter (SOCKET s) is the socket where we want to
receive the data. The second parameter (void *buf) is the data
buffer. Again, it is a pointer to a buffer where we want to store the data.
The third parameter (size_t len) defines the number of bytes to
receive. The fourth parameter (int flags) is used to set the tempo-
rary input flags. Table 5-5 lists the possible flags. The fifth parameter
(struct sockaddr *from) is a pointer to the address structure
that holds the address information of the host we want to receive data
from. The sixth parameter (socklen_t *addrlen) is a value-result
argument. It defines the size of the address structure and also returns
the updated size when the function returns.

The number of received bytes is returned if everything went fine.
Unlike with the recv function, a 0 return value does not mean that the
other host has closed the connection. That is obvious as there is no
such thing as connection in UDP. This also means that we can write
datagrams of zero size. If there was an error, we need to retrieve the
actual error values by using the WSAGetLastError function in Win-
dows or the errno variable in Unix.

Win32 return values:

� Success: Number of bytes received

� Failure: SOCKET_ERROR

Unix return values:

� Success: Number of bytes received

� Failure: –1

Address Data Conversion Functions

We humans prefer to have our information in written text or numbers
instead of just ones and zeroes like computers. An Internet address is
one of those things that may be displayed in many ways, depending on
who, or better yet what, uses it. Humans can remember the addresses
best when they are written as text, for example, “www.hunted-
cow.co.uk.” As computers do not have to worry about forgetting

Chapter 5 / Basic Sockets Programming 133

anything, they can be optimized to store the addresses in a format that
takes the least amount of memory.

We have three functions for IPv4 addresses and two functions for
IPv6 addresses. These two new functions are protocol independent
though, so it does not matter which protocol we use with them.

We explain only one of these functions here because we need that
function in our network library, and the others are easy to understand
after you understand this one.

inet_aton Function (Unix, Win32)

int inet_aton(const char *string, struct in_addr *address);

This function converts the provided string address into a network byte
ordered binary value. Note that depending on the DNS server configu-
ration, the string can be an IP address in numeric or dotted decimal
format or in written text as most web addresses are.

Client/Server Programming

Now that we have everything set up for the actual network program-
ming, we can move on to write our server and client code. Servers and
clients work very differently. Most of the time the server is waiting for
connections to come in. Once one does come in, it serves the client
that is connected.

Server Methods

Servers can be very passive applications. There can be times when
they do not do anything at all. This can happen if there are no clients to
be served. We must keep this in mind when creating the servers,
because if we make our server loop when there are no connections, it
can easily drain all the CPU time just by looping an “empty” loop.

If our server is supposed to serve only one client at a time, it is
called an iterative server. It does not listen for incoming connections
once a connection is already open. When the connection terminates,
the server starts to listen for a new connection. This kind of server is
not very useful, because multiple clients may be “on hold” since the
server can process only one connection at a time.

Computer game servers simply cannot work this way, because it is
against the principal idea of these servers. The idea is that multiple
players connect to a server and then communicate via that server (i.e.,
play the game). That is why this kind of play is called multiplay.

134 Chapter 5 / Basic Sockets Programming

Servers that process multiple clients at once are called concurrent
servers. When the server is started, it starts listening for incoming
connections. When a connection comes in, it creates a child process (a
thread) and the main program continues listening for incoming connec-
tions. The main program in this case is often also a thread, and not
really the actual main program. The reason is simple: If it were the
main program, it would not be much of a server. The main program is
the very core, the part that initiates the listening functions and so on.

Figure 5-2 shows how a concurrent server works. The listening
socket is always there and, depending on the state of the application
(i.e., whether it will allow any more connections), it will accept all the
new connections coming in. Clients 1 to 3 have already established a
connection and are being served normally by the server. Client 4 has
just connected to the server, and is still in the process of the TCP
three-way handshake. The listening socket is already free and has
started to listen for more connections.

Looking from the outside, a concurrent UDP server works the same
way as TCP servers. Clients inform that they are there and the server
takes care of them. There are lots of technical differences though, and
these are discussed in the next section.

Clients

Clients are active applications. They initiate the connection to the
server, so they never wait for things to happen (other than wait for data
from the server).

The client application is the application that the normal user uses. In
the world of gaming, the client is the game itself. The player should not
know anything else about the server except the address and port

Chapter 5 / Basic Sockets Programming 135

Figure 5-2
A concurrent
server

number. Sometimes even this information is built into the game, so the
player does not have to set the IP address and/or port manually.

When working in a local area network (LAN), we can create a server
search system, which is one way to eliminate the need for manually
setting the address information. We discuss this system in Chapter 6,
“I/O Operations.”

Byte Ordering

There is no standard way of ordering bytes in computer memory. Most
PCs nowadays use Intel’s way of ordering the bytes, which is to store
them in little-endian order. This means that if we have a two-byte vari-
able, the last actual byte is stored first in the memory. Big-endian
means that the bytes are stored in the correct order — first byte first.

Different processors store and access the bytes differently. As we
said, Intel’s way is to store them in little-endian order. But because we
are creating multiplatform applications, we cannot just use this one
way. We must have a way to transform the bytes into a format that all
computers understand. Therefore, we have to use network byte order.
The network byte order is big-endian with the Internet protocols we
use. There are functions to convert network byte ordered bytes into
host byte ordered.

Creating a Server

Now we are going to learn how to create a server on Unix and Win-
dows, using both TCP and UDP. Let’s go through the most important
events when creating a server.

Every sockets application (client or server) must first create the
socket. Depending on the protocols we use, the parameters change
accordingly.

// A stream (TCP) IPv4 socket
SOCKET listeningSocket;

listeningSocket = socket(AF_INET, SOCK_STREAM, 0);

Then, when the socket is successfully created, we usually fill in the
address information of the server. We do not have to enter the local IP
address of the server if we have only one network interface card on the
server machine. If we have more than one, we would just enter the IP
address we want to use. Here we assume that there is only one card, so

136 Chapter 5 / Basic Sockets Programming

Figure 5-3
Byte ordering

we let the kernel automatically fill in the IP address. But we do have to
enter the port number ourselves. We must remember the restrictions
that exist when choosing a port number for our server. Chapter 4,
“Introduction to TCP/IP” explains those things that limit port number
availability.

struct sockaddr *servAddr;
struct sockaddr_in *inetServAddr;
int portNumber;

// Allocate memory for the address structure and set it to zero.
servAddr = (struct sockaddr *) malloc(sizeof(sockaddr));
memset((char *) servAddr, 0, sizeof(sockaddr));

// Fill the address structure.
servAddr->sa_family = (u_short) AF_INET;
inetServAddr = (struct sockaddr_in *) servAddr;
inetServAddr->sin_port = htons((u_short) portNumber);

Of course, if we are developing a server for personal use only (LAN
only), we can forget some of these restrictions. But even in this case
we cannot use just any number, because the operating systems use
some ports without having any external application installed. Because
we are developing a game server for the public, we must choose a port
that has no restrictions at all.

Once we have filled in the required address information, we must
bind this information to the socket we created in the beginning.

// Bind the address information to the socket.
error = bind(listeningSocket, servAddr, sizeof(sockaddr));

NOTE Whatever we are programming, we should never forget to
check every possible function for errors. A lot of crashes that people
blame on the operating system are actually caused by an applica-
tion that does not handle errors properly.

Now we need to discuss the TCP and UDP code separately because of
their obvious differences.

TCP

As we have already learned, TCP is the easy transport protocol (for the
programmer). This is also true when creating servers. All we need to
do now is make the server listen for incoming connections and accept
them. For every new connection, the server creates a child process and
a new socket (if we are talking about a concurrent server).

// Listen for incoming connections. Queue max 5 connections.
error = listen(listeningSocket, 5);

Chapter 5 / Basic Sockets Programming 137

...

// Accept the connection. Accept is a blocking function.
connectedSocket = accept(listeningSocket, NULL, NULL);

Figure 5-4 shows normal TCP client/server operation. You can see how
much easier and faster it is to use UDP, as shown in Figure 5-5.

UDP

Because UDP is a connectionless protocol, it does not have a function
for listening for incoming connections. The principal idea of UDP is that
it simply does not have to listen to them. A UDP server just reads the
incoming datagrams and acts how the programmer wants it to act.

But how do we keep the server organized with all the clients sending
data to it? A game server needs to send data to a client pretty much
whenever it is required, so we cannot let the client do all the active
sending.

The solution for this is a so-called “knocking” system. When the cli-
ent wants to tell the server that it exists and wants to interact with the
server, the client sends a “knock” datagram to the server. This
datagram can be anything; it is up to you to decide what information is
stored within it. When the server receives a datagram or message like
this, it updates its list of clients and either creates a new child process
to serve the client or simply acknowledges that there may be incoming

138 Chapter 5 / Basic Sockets Programming

Figure 5-4
Normal TCP
client/server
operation

Figure 5-5
Normal UDP
client/server
operation

messages from that client. In the latter case, the server uses the one
and only socket to interact with all the clients.

A UDP server that uses only one socket to interact with clients
must always retrieve the address information when it is receiving data
(assuming that it wants to send data back also). With UDP we cannot
simply send data to a socket without providing the exact address. This
kind of server is not necessarily an iterative server. It may process
multiple clients at a time, as it responds only when the client sends
data to the server.

Simple Echo TCP Server

It is time to create our very first sockets application: a simple echo
TCP server. This server is an iterative server (serves only one client at
a time), and its function is to return the character we send to it in
uppercase. The protocol used is TCP, but later we will see how easy it
is to make a UDP server from our existing TCP code. This example
program is of no real use and is intended to show the basic idea of
every server, which is the following: A request from the client is sent
to the server, and the server sends feedback to the client. In this exam-
ple, the request is simply the letter sent to the server, and the feedback
is the uppercase letter that is sent back to the client.

The following code shows the simple echo TCP server in its
entirety. The code is written for the Windows operating system, but it
is easy to change it so that it compiles and runs on Unix too. However,
that is not the idea of this example, so let’s skip it for now.

The functional concept of this server is that the server listens for a
connection to come in and when one does, it accepts it. Then the client
is supposed to send single letters to the server, and the server will
send them back in uppercase. If the user on the client end enters the
letter “q” (lowercase), the server stops automatically. The whole appli-
cation is stopped, so it will not accept any other connections. For this
example, there is no need to write any extra checking if the user is
exiting on the client end, because the recv function will notice if the
connection is closed.

#ifndef _WINSOCKAPI_
#define _WINSOCKAPI_
#endif

#include <windows.h>
#include <winsock2.h>

#include <stdio.h>

// Declare the sockets we use.

Chapter 5 / Basic Sockets Programming 139

SOCKET listeningSocket;
SOCKET connectedSocket;

int InitSockets(void)
{

struct sockaddr *servAddr;
struct sockaddr_in *inetServAddr;

int error = 0;

// Create the socket.
listeningSocket = socket(AF_INET, SOCK_STREAM, 0);

if(listeningSocket == INVALID_SOCKET)
{

printf("error: socket() failed");
return –1;

}

// Allocate memory for the address structure and set it to zero.
servAddr = (struct sockaddr *) malloc(sizeof(sockaddr));
memset((char *) servAddr, 0, sizeof(sockaddr));

// Fill the address structure.
servAddr->sa_family = (u_short) AF_INET;
inetServAddr = (struct sockaddr_in *) servAddr;
inetServAddr->sin_port = htons((u_short) 9009);

// Bind the address information to the socket.
error = bind(listeningSocket, servAddr, sizeof(sockaddr));

if(error == SOCKET_ERROR)
{

printf("error: bind() failed");
free(servAddr);
return –1;

}

free(servAddr);
servAddr = NULL;

// Listen for incoming connections. Queue only one connection.
error = listen(listeningSocket, 1);

if(error == SOCKET_ERROR)
{

printf("error: listen() failed");
return –1;

}

// Accept the connection. Accept is a blocking function.
connectedSocket = accept(listeningSocket, NULL, NULL);

if(connectedSocket == INVALID_SOCKET)

140 Chapter 5 / Basic Sockets Programming

{
printf("error: socket() failed");
return –1;

}

return 0;
}

void ServerProcess(void)
{

int connectionOpen;

char buf[2];

connectionOpen = 1;

// Loop as long as connection is open.
while(connectionOpen)
{

// Read the incoming data from the connected socket.
if(recv(connectedSocket, buf, 2, 0))
{

// Set the received letter to uppercase and
// make sure the string ends after that by setting the next
// byte to NULL.
buf[0] = toupper(buf[0]);
buf[1] = '\0';

printf("Got message from client: %s\n", buf);

// Send the feedback.
if(send(connectedSocket, buf, 2, 0) == SOCKET_ERROR)
{

connectionOpen = 0;
}

}
else
{

closesocket(connectedSocket);
connectionOpen = 0;

}
}

}

int main(void)
{

if(NET_WinSockInitialize() != 0)
{

printf("Critical error, quitting\n");

return –1;
}

if(InitSockets() != 0)

Chapter 5 / Basic Sockets Programming 141

{
printf("Critical error, quitting\n");

WSACleanup();

return –1;
}

ServerProcess();

WSACleanup();

return 0;
}

Now let’s see what is going on in the program. Let’s start from the
main function, as that is where the application always starts.

main Function

You may notice that there is not much in the main function, specifically
no basic socket functions. But there are two function calls that are very
important. Let’s have a closer look at them:

NET_WinSockInitialize();

This is the function we introduced at the beginning of this chapter. It
belongs to the network library that we will create later on. This func-
tion initializes the WinSock API for us. After a successful call, the
WinSock API is ready to be used.

NOTE On Unix, we do not call the NET_WinSockInitialize
function.

WSACleanup();

This function is very important also. It is used to uninitialize WinSock.
We are not allowed to exit the application without calling this function if
the WinSock API is initialized. As we have already learned, one of this
function’s tasks is to unregister the WinSock DLL from our application.
Windows’ DLL registration system will lose track of the registered
DLLs if we do not call this function at the end of each WinSock
application.

InitSockets Function

The InitSockets function does all the initialization of sockets so
they can be used and the server process itself can start.

First we create the listening socket and check that it is successfully
created. A listening socket is a socket that the server uses to listen for

142 Chapter 5 / Basic Sockets Programming

incoming connections. Once a connection comes in and is accepted, the
server will start using a connected socket and leave the listening
socket free for other clients.

The socket we create here is an IPv4 stream socket. Because it is a
stream socket, it uses the TCP transport protocol. The flags parameter
is set to 0 as it is currently not used in the sockets API. Then we check
whether the socket descriptor is invalid. If it is, we simply exit the pro-
gram. If the socket is created as it is supposed to be, we move on.

listeningSocket = socket(AF_INET, SOCK_STREAM, 0);

if(listeningSocket == INVALID_SOCKET)
{

printf("error: socket() failed");
return –1;

}

Now we fill in the address information of the server. First we need to
allocate memory for the structure and set it to 0. Then we fill the struc-
ture with the required information: protocol family and port number.
There is no need to tell the program the IP address of the computer, as
it can automatically retrieve it. If there is more than one network inter-
face card installed, we can choose the one we want here. For this
example program we have selected the port number 9009.

servAddr = (struct sockaddr *) malloc(sizeof(sockaddr));
memset((char *) servAddr, 0, sizeof(sockaddr));

// Fill the address structure.
servAddr->sa_family = (u_short) AF_INET;
inetServAddr = (struct sockaddr_in *) servAddr;
inetServAddr->sin_port = htons((u_short) 9009);

Now that we have the address information ready in the structure, let’s
tell the socket to use that information. We bind the information to the
listening socket with the bind function. Again, we must check
whether an error occurred in the call to bind. If so, we need to free
the allocated memory before we are allowed to exit. If everything went
fine, we free the memory we allocated for the address structure and
move on again.

// Bind the address information to the socket.
error = bind(listeningSocket, servAddr, sizeof(sockaddr));

if(error == SOCKET_ERROR)
{

printf("error: bind() failed");
free(servAddr);
return –1;

}

Chapter 5 / Basic Sockets Programming 143

free(servAddr);
servAddr = NULL;

Everything is now ready for listening for incoming connections. At first
glance it may seem odd that it is just one call to a function without any
“loop as long as there are no connections coming in” loop. Does the
function just run once and then the process moves on to the next one?
In this case, no. Some theory is required here to understand this. A
socket can be blocking or non-blocking. With a blocking socket, some
sockets functions will go to sleep when there is no action of any kind
that needs to be processed. A non-blocking socket, on the other hand,
will not put the functions to sleep. Once the functions are called, they
check if there is an action to process; if there is not, they return and the
next command (function) of the process is run. By default, all sockets
are blocking. Blocking and non-blocking I/O is discussed more in Chap-
ter 6, “I/O Operations.”

So if we see a fragment of code similar to the following code, we can-
not say how the application will perform, as we do not know if the
socket is blocking or not. But as we do know that it is blocking in this
example, we know that the application will stop at the listen function
as long as there are no incoming connections.

Now we put the listening socket to the use for which it was created
by passing it as a parameter to the listen function. We set the back-
log value to 1 because our server will process only one client at a time
and, better yet, one client per instance.

Again, we cannot forget checking for errors. If listen fails, we exit
the application.

// Listen for incoming connections. Queue only one connection.
error = listen(listeningSocket, 1);

if(error == SOCKET_ERROR)
{

printf("error: listen() failed");
return –1;

}

Now we have reached the accept function, so we know that someone
wants to connect to our server. What we do now is create a new socket
for the soon-to-be connected client. We pass the listening socket as a
parameter to accept, as the connection we want to accept is on that
socket. We have no interest in the address information of the client, so
pass NULL as the two remaining parameters.

Next we check for errors. If the connected socket is invalid after a
call to accept, we exit the application. If it is valid, we are done
initializing the server.

144 Chapter 5 / Basic Sockets Programming

// Accept the connection.
connectedSocket = accept(listeningSocket, NULL, NULL);

if(connectedSocket == INVALID_SOCKET)
{

printf("error: socket() failed");
return –1;

}

ServerProcess Function

Now we get to the server process itself. This function has the main
loop that every program has. It is looped as long as the connection is
open. Let’s have a closer look at the input/output functions we use
here:

// Read the incoming data from the connected socket.
if(recv(connectedSocket, buf, 2, 0))
{

// Set the received letter to uppercase and
// make sure the string ends after that by setting the next
// byte to NULL.
buf[0] = toupper(buf[0]);
buf[1] = '\0';

printf("Got message from client: %s\n", buf);

// Send the feedback.
if(send(connectedSocket, buf, 2, 0) == SOCKET_ERROR)
{

connectionOpen = 0;
}

}
else
{

closesocket(connectedSocket);
connectionOpen = 0;

}

At this point in the program, we can forget about the listening socket.
This program is not going to use it anymore. The socket we use from
now on is the connected socket that we got from the accept function.

Let’s get the data flowing! We call the recv function inside an if
statement because we need to know if recv really read data from the
socket or if it returned 0 to indicate that the connection has been
closed or is lost. This is possible with a blocking socket, as recv will
not return before it has data to read or before it notices that the connec-
tion is closed. A non-blocking socket would return 0 from a call to
recv if there is no data to read but the connection is still alive.

We read the data to a very small buffer in this example, only two
bytes in size. When we notice that data has arrived, we process it.

Chapter 5 / Basic Sockets Programming 145

First, we simply set the received letter to uppercase, and then make
sure the next letter is NULL; therefore, the string ends after the first
letter. After this is done, we show the user what we received and send
it back to the client. If we could not send the data (if send returns less
than 0), we assume that the connection is broken and exit the program.

We close the socket and exit the program if recv returns 0.
Remember that in this example, because the sockets we use are block-
ing, the socket functions do not return if there is nothing happening (for
example, if recv is not receiving data).

Simple Echo UDP Server

As we want to use UDP as well as TCP in our socket programs, we
now modify the simple echo TCP server code to work with UDP. Mod-
ifying the TCP code is rather easy. The following shows all of the UDP
server code.

#ifndef _WINSOCKAPI_
#define _WINSOCKAPI_
#endif

#include <windows.h>
#include <winsock2.h>

#include <stdio.h>

// Declare the sockets we use.
SOCKET Socket;

int InitSockets(void)
{

struct sockaddr *servAddr;
struct sockaddr_in *inetServAddr;

int error = 0;

// Create the socket.
Socket = socket(AF_INET, SOCK_DGRAM, 0);

if(Socket < 0)
{

printf("error: socket() failed");
return –1;

}

// Allocate memory for the address structure and set it to zero.
servAddr = (struct sockaddr *) malloc(sizeof(sockaddr));
memset((char *) servAddr, 0, sizeof(sockaddr));

// Fill the address structure.
servAddr->sa_family = (u_short) AF_INET;

146 Chapter 5 / Basic Sockets Programming

inetServAddr = (struct sockaddr_in *) servAddr;
inetServAddr->sin_port = htons((u_short) 9009);

// Bind the address information to the socket.
error = bind(Socket, servAddr, sizeof(sockaddr));

if(error == SOCKET_ERROR)
{

printf("error: bind() failed");
free(servAddr);
return –1;

}

free(servAddr);
servAddr = NULL;

return 0;
}

void ServerProcess(void)
{

struct sockaddr_in inetClientAddr;
int clientLen;

int connectionOpen;

char buf[2];

clientLen = sizeof(inetClientAddr);

connectionOpen = 1;

// Loop as long as connection is open.
while(connectionOpen)
{

// Read the incoming data from the connected socket.
if(recvfrom(Socket, buf, 2, 0, (struct sockaddr *)

&inetClientAddr, &clientLen))
{

// Set the received letter to uppercase and
// make sure the string ends after that by setting the next
// byte to NULL.
buf[0] = toupper(buf[0]);
buf[1] = '\0';

printf("Got message from client: %s\n", buf);

// Send the feedback.
if(sendto(Socket, buf, 2, 0,

(struct sockaddr *) &inetClientAddr, clientLen) ==
SOCKET_ERROR)

{
connectionOpen = 0;

}

Chapter 5 / Basic Sockets Programming 147

}
else
{

connectionOpen = 0;
}

}
}

int main(void)
{

if(NET_WinSockInitialize() != 0)
{

printf("Critical error, quitting\n");

return –1;
}

if(InitSockets() != 0)
{

printf("Critical error, quitting\n");

WSACleanup();

return –1;
}

ServerProcess();

WSACleanup();

return 0;
}

The biggest change in the UDP code in comparison to the TCP code is
that we have only one socket. On the TCP server, we had a listening
socket and a connected socket. On the UDP server, we have only one
“generic” socket because there is no need to listen for incoming con-
nections and connect them. This one UDP socket just reads the
incoming data and sends data back.

The following sections provide a closer look at the changes.

InitSockets Function

First, we change the calls to the socket and bind functions to match
these two function calls. We have replaced the listening socket with the
generic socket and we are now creating a datagram socket instead of a
stream socket.

After calling bind we are done. If we were using TCP, we would
start the listening process now. But with UDP there is no need, so we
can start the server process function right after we have bound the
local address information to the socket.

148 Chapter 5 / Basic Sockets Programming

Socket = socket(AF_INET, SOCK_DGRAM, 0);

...

error = bind(Socket, servAddr, sizeof(sockaddr));

ServerProcess Function

For the server processing function, we declare two variables that are
not used in the TCP version. The first one is the Internet client
address structure, and the second one is an integer holding the length
of the structure. We need to set the length variable to the size of the
structure before we pass it to any function, as shown in the following
code.

struct sockaddr_in inetClientAddr;
int clientLen;

...

clientLen = sizeof(inetClientAddr);

The next thing we have changed is that we have replaced the recv and
send functions with the recvfrom and sendto functions. They
work almost like the ones in the TCP version, but there are two new
parameters in recvfrom and sendto.

We must pass the address information structure and its length as
parameters in both functions. In recvfrom, the address structure is
filled by the function. When the function is receiving data, it fills the
structure with the corresponding address where the data is coming
from. The function also updates the length variable, as it is a value-
result argument.

Now that we have the address information for where the data came
from, we use it to send data to the correct host. We pass the address
structure and the length of the structure to sendto, updated by
recvfrom. This way we are always sending data to the correct host,
because in this example program we only send data when we have first
received it. If we had a program that required sending data even when
we have not received anything (we need the address information
though, hence at least one datagram must have been received before),
we would need to store all the addresses of the clients we want to send
data to. That is why it is a good idea to have some kind of a system where
there is a dedicated message for informing the server of the client.

if(recvfrom(Socket, buf, 2, 0, (struct sockaddr *) &inetClientAddr,
&clientLen))

...

if(sendto(Socket, buf, 2, 0, (struct sockaddr *) &inetClientAddr,
clientLen) == SOCKET_ERROR)

Chapter 5 / Basic Sockets Programming 149

These are all the changes we need to make the server work using the
UDP protocol. The UDP version of the server works a little bit differ-
ently as it will not exit when the client is shut down. This is because
there is no connection that is closed. This feature has its good and bad
sides. One good thing is that the server can be used effectively because
only one process is running all the time. A bad thing is the fact that we
do not know when a client crashes or something else like that happens.
But, as we have already said many times, UDP is unreliable, but it can
be made reliable.

Creating a Client

What would we do with a server if we did not have a client application?
Nothing. So let’s make one. Remember that in computer games, the
game itself is the client, so you must design your game so that sending
and receiving data does not interfere with other parts of the game too
much. Too much? It is almost impossible to make it work so that the
communications library would not have any effect on the game flow.

First, let’s look at the functions we need for all clients.

TCP

We create the client-side socket exactly like the one on the server. We
must set it to use the same protocols on both ends (IPv4 and TCP in
this case).

SOCKET Socket;
Socket = socket(AF_INET, SOCK_STREAM, 0);

Then we convert the Internet address from the server IP number to a
form that the computer can use. After that we fill the address structure,
but we do not bind this address to the socket ourselves, because the
connect function will do it for us.

struct sockaddr_in inetServAddr;
int portNumber;

u_long inetAddr = inet_addr(IPaddress);

memset((char *) &inetServAddr, 0, sizeof(inetServAddr));
inetServAddr.sin_family = AF_INET;
inetServAddr.sin_port = htons((u_short) portNumber);
inetServAddr.sin_addr.s_addr = inetAddr;

error = connect(Socket, (struct sockaddr *) &inetServAddr,
sizeof(inetServAddr));

150 Chapter 5 / Basic Sockets Programming

That is all the basic initializing there is to do on the client side when
using the TCP protocol.

UDP

Creating a UDP socket requires only one modification: We need to
change the second parameter of the socket function to SOCK_
DGRAM. That is all. We fill the address structure in the same way as
when using TCP.

SOCKET Socket;
Socket = socket(AF_INET, SOCK_DGRAM, 0);

As the UDP protocol is a connectionless protocol, we do not need to
run the the connect function at all when using UDP. This is the big-
gest difference in initializing client sockets.

When sending data to a UDP server, we need to pass the address
information of the server to the sending function every time we run it.
Therefore we must store the address structure globally to be able to
access it from all functions.

Simple Echo TCP Client

As we can see in the following code, the client source code is not very
different from the server code.

#ifndef _WINSOCKAPI_
#define _WINSOCKAPI_
#endif

#include <windows.h>
#include <winsock2.h>

#include <stdio.h>

// Declare the only socket we need.
SOCKET Socket;

int InitSockets(char *IPaddress)
{

struct sockaddr_in inetServAddr;
int error = 0;

// Create a TCP socket.
Socket = socket(AF_INET, SOCK_STREAM, 0);

if(Socket < 0)
{

printf("error: socket() failed");
return –1;

Chapter 5 / Basic Sockets Programming 151

}

// Create the Internet address from the IP number
u_long inetAddr = inet_addr(IPaddress);

memset((char *) &inetServAddr, 0, sizeof(inetServAddr));
inetServAddr.sin_family = AF_INET;
inetServAddr.sin_port = htons((u_short) 9009);
inetServAddr.sin_addr.s_addr = inetAddr;

// Try to connect the TCP server.
error = connect(Socket, (struct sockaddr *) &inetServAddr,

sizeof(inetServAddr));

if(error != 0)
{

printf("error: could not find server.\n");
return –1;

}

return 0;
}

void ClientProcess(void)
{

int connectionOpen;

char transmitBuf[3];
char receiveBuf[3];
strcpy(transmitBuf, "");
strcpy(receiveBuf, "");

connectionOpen = 1;

// Loop as long as connection is open.
while(connectionOpen)
{

// Get the string to send.
if(gets(transmitBuf))
{

if(strcmp(transmitBuf, "q") == 0)
{

closesocket(Socket);
connectionOpen = 0;
break;

}

// Send the transmit buffer to the socket.
if(send(Socket, transmitBuf, 2, 0) == SOCKET_ERROR)
{

connectionOpen = 0;
}

}

152 Chapter 5 / Basic Sockets Programming

// Read the incoming data from the connected socket.
if(recv(Socket, receiveBuf, 2, 0))
{

printf("Got reply from server: %s\n", receiveBuf);
}
else
{

connectionOpen = 0;
}

}
}

int main(int argc, char *argv[])
{

if(argc < 2)
{

printf("Usage: SimpleEchoTCPClient.exe <Server IP>\n");
return –1;

}

NET_WinSockInitialize();

if(InitSockets(argv[1]) != 0)
{

printf("Critical error, quitting\n");

WSACleanup();

return –1;
}

ClientProcess();

WSACleanup();

return 0;
}

Now let’s see what is different.

main Function

The only thing that is different in this function in comparison to the
server code is the following: the two parameters in the main function,
the if statement, and the call to the InitSockets function. The if
statement checks whether the user provided enough arguments when
running the executable. The first argument is the executable name
itself (in the form the user entered it), and the second argument in this
case should be the IP address of the server. If there are not enough
arguments, the program displays a “usage” message telling the user
what arguments are needed. The call to the InitSockets function is

Chapter 5 / Basic Sockets Programming 153

a little bit different, because now we need to pass the IP address infor-
mation to it.

Other parts of the main function are similar to the server code —
just some simple function calls and the cleanup code.

int main(int argc, char *argv[])
{

if(argc < 2)
{

printf("Usage: SimpleEchoTCPClient.exe <Server IP>\n");
return –1;

}

...

if(InitSockets(argv[1]) != 0)

...

InitSockets Function

The most obvious change in this function is that we now provide the
server IP address within a parameter. We need to do this to make it
possible to enter any IP address when running the client. We could
hardcode an address to the code, but that would not be very wise. Then
we should always have the server on the hardcoded IP address (which
is not always even possible).

int InitSockets(char *IPaddress)

As we can see in the following code, the socket is created exactly like it
is on the server end. There really is no way to make it different
because we must use the very same protocols. Once more, we must
check for errors.

// Create a TCP socket.
Socket = socket(AF_INET, SOCK_STREAM, 0);

if(Socket < 0)
{

printf("error: socket() failed");
return –1;

}

Now that we have the server IP address in a string, we need to convert
it to a form the computer understands. After that we reset the address
structure memory to 0. Then we fill the address information structure
with this address and the well-known port number, which is 9009 in
this example. We must convert the integer value 9009 (host byte
ordered value) to network byte ordered format. We also set the proto-
col family to AF_INET since we are using IPv4.

154 Chapter 5 / Basic Sockets Programming

// Create the Internet address from the IP number
u_long inetAddr = inet_addr(IPaddress);

memset((char *) &inetServAddr, 0, sizeof(inetServAddr));
inetServAddr.sin_family = AF_INET;
inetServAddr.sin_port = htons((u_short) 9009);
inetServAddr.sin_addr.s_addr = inetAddr;

Then all there is left to do in this function is to connect the server. To
do this we use connect. You probably noticed that we do not call
bind at all on the client. This is because we do not have to; connect
does the address binding for us. Therefore, we must provide the
address structure we just filled earlier for connect. We typecast the
structure to the generic address format, because connect is designed
to work on both IPv4 and IPv6, and so it accepts only generic format
addresses.

It is very important to check for errors here. If there is an error, it
usually means that we could not find the server. Some other errors may
occur too, but usually it is enough to inform the user that we could not
connect the server.

// Try to connect the TCP server.
error = connect(Socket, (struct sockaddr *) &inetServAddr,

sizeof(inetServAddr));

if(error != 0)
{

printf("error: could not find server.\n");
return –1;

}

connect also is a blocking function, but not like other blocking func-
tions. If we set the socket to non-blocking mode, the connect
function is not affected by this. It will still wait a certain amount of time
for the connection to succeed, and after that time it will fail.

ClientProcess Function

This function matches the ServerProcess function on the server.
Its purpose is to wait for the user to enter the letter to send and then
send it. After that it will wait for a response from the server, then the
loop starts all over again. Let’s see what is going on in the function.

We have separate buffers for transmitting and receiving to prevent
mix-ups. The application could work with one buffer only, but it is much
better for the programmer that we have two buffers. In bigger pro-
grams, it is sometimes a must to have different buffers.

char transmitBuf[3];
char receiveBuf[3];

Chapter 5 / Basic Sockets Programming 155

strcpy(transmitBuf, "");
strcpy(receiveBuf, "");

Here we get the letter to send into the transmit buffer using the gets
function. Some problems arise if the user enters more than one letter,
but in this example we do not worry about that because it really is
beyond the scope of this example. For now, it is enough that we take
care of this on the server by making sure the string ends after the first
letter.

Next we check whether the letter entered was “q” (lowercase). If it
was, we close the socket and exit the loop, thus exiting the whole pro-
gram. The server will notice that we have closed the socket and it will
exit too.

If the letter we entered was something other than “q,” we send it to
the server. Because a string always contains at least two bytes, assum-
ing that the string is not empty (one letter + NULL), and because we
want to send only one letter, we send two bytes.

If send returns SOCKET_ERROR, something went wrong and we
exit the program without any extra checking.

// Get the string to send.
if(gets(transmitBuf))
{

if(strcmp(transmitBuf, "q") == 0)
{

closesocket(Socket);
connectionOpen = 0;
break;

}

// Send the transmit buffer to the socket.
if(send(Socket, transmitBuf, 2, 0) == SOCKET_ERROR)
{

connectionOpen = 0;
}

}

After we have sent the data to the server, we immediately start to wait
for the response by using the function recv. If the number of bytes
received is more than zero (the return value of recv is more than
zero), it means that data has successfully arrived. If not, we exit the
loop and the whole program.

After this, the loop starts all over again, assuming that no errors
have been encountered and that the user did not enter the letter “q.”

// Read the incoming data from the connected socket.
if(recv(Socket, receiveBuf, 2, 0))
{

printf("Got reply from server: %s\n", receiveBuf);
}
else

156 Chapter 5 / Basic Sockets Programming

{
connectionOpen = 0;

}

Simple Echo UDP Client

The following code shows the UDP version of the simple echo client.

#ifndef _WINSOCKAPI_
#define _WINSOCKAPI_
#endif

#include <windows.h>
#include <winsock2.h>

#include <stdio.h>

// Declare the only socket we need.
SOCKET Socket;

struct sockaddr_in inetServAddr;
int servLen = sizeof(inetServAddr);

int InitSockets(char *IPaddress)
{

int error = 0;

// Create a TCP socket.
Socket = socket(AF_INET, SOCK_DGRAM, 0);

if(Socket < 0)
{

printf("error: socket() failed");
return –1;

}

// Create the Internet address from the IP number
u_long inetAddr = inet_addr(IPaddress);

memset((char *) &inetServAddr, 0, sizeof(inetServAddr));
inetServAddr.sin_family = AF_INET;
inetServAddr.sin_port = htons((u_short) 9009);
inetServAddr.sin_addr.s_addr = inetAddr;

return 0;
}

void ClientProcess(void)
{

int connectionOpen;

char transmitBuf[3];
char receiveBuf[3];

Chapter 5 / Basic Sockets Programming 157

strcpy(transmitBuf, "");
strcpy(receiveBuf, "");

connectionOpen = 1;

// Loop as long as connection is open.
while(connectionOpen)
{

// Get the string to send.
if(gets(transmitBuf))
{

// Send the transmit buffer to the socket.
if(sendto(Socket, transmitBuf, 2, 0,

(struct sockaddr *) &inetServAddr, servLen) ==
SOCKET_ERROR)

{
connectionOpen = 0;

}
}

// If the letter the user entered is "q", stop the application.
if(strcmp(transmitBuf, "q") == 0)
{

connectionOpen = 0;
break;

}

// Read the incoming data from the connected socket.
if(recvfrom(Socket, receiveBuf, 2, 0, NULL, NULL))
{

printf("Got reply from server: %s\n", receiveBuf);
}
else
{

connectionOpen = 0;
}

}
}

int main(int argc, char *argv[])
{

if(argc < 2)
{

printf("Usage: SimpleEchoTCPClient.exe <Server IP>\n");
return –1;

}

NET_WinSockInitialize();

if(InitSockets(argv[1]) != 0)
{

printf("Critical error, quitting\n");

158 Chapter 5 / Basic Sockets Programming

WSACleanup();

return –1;
}

ClientProcess();

WSACleanup();

return 0;
}

Note that it is not much different from the TCP version. The following
sections look at what has changed.

InitSockets Function

We create the socket exactly like in the TCP version but with one
change. Instead of creating a stream socket, we create a datagram
socket. To do this, we set the second parameter to SOCK_DGRAM.

Then we fill the address information structure that holds the
server’s address. Again, we do it exactly like in the TCP version, only
this time the structure is a global variable as we need it elsewhere in
the code. Once the structure is filled completely, we are done. There is
no need to call bind or connect and we can move on to the client
process function.

Socket = socket(AF_INET, SOCK_DGRAM, 0);

ClientProcess Function

In this function, we replace send and recv with the following func-
tions and remove the socket closing functions. Unlike on the
server-side code, we do not need to receive any data before we know
the address of the server. This is obvious, is it not? If we do not know
the address of the server, we hit the wall. We cannot do anything with-
out that piece of information. Fortunately in computer games today, the
servers can be found automatically using a built-in or external applica-
tion that uses a server (we do not need to know the address of this
server, as it is built in) to retrieve the IP addresses and ports of the
servers. Let’s assume that we know the address of the simple echo
server and that we have entered the correct address when running this
client. Now we use the address information structure that we filled in
for the InitSockets function to send the data to the correct host.
Then we assume that the server address does not change and we do
not care about checking the address structure returned by recvfrom.

if(sendto(Socket, transmitBuf, 2, 0, (struct sockaddr *) &inetServAddr,
servLen) == SOCKET_ERROR)

Chapter 5 / Basic Sockets Programming 159

...

if(recvfrom(Socket, receiveBuf, 2, 0, NULL, NULL))

NOTE It is possible that the server address changes between a
sendto and recvfrom. For example, a concurrent UDP server
spawns the connections on new ephemeral ports because it must
use the well-known port for listening for incoming connections. So
when a client sends data to the server, the server spawns a child
process and a new port for that “connection.” Then the next time
the client receives data from the server it must update its address
information for the server because the port has changed.

Running the Simple Echo Application

To try out the simple echo application, we must first start the server
program and then start the client program. We must start the programs
in this order because the client application will exit if it cannot find any-
thing on the server port.

To run the server, from the command prompt type:

> SimpleEchoTCPServer.exe

Then we run the client, passing the server IP address as the first and
only argument:

> SimpleEchoTCPClient.exe 127.0.0.1

In this example, we are running both programs on the same host, and
therefore we can use the IP address 127.0.0.1, which is a local host
address. When you use this address, you are pointing to your own
computer.

Now that both of the programs are running, we can start sending
data back and forth. On the client side, enter any letter except “q” and
then press Enter. You will see on the serverside how the letter is
received, and almost immediately on the client side how the letter is
sent back in uppercase.

To stop the application, enter the letter “q” on the client program.
The TCP version will end both client and server, but the UDP version
ends only the client.

Figure 5-6 and 5-7 show a normal run of the simple echo application.

160 Chapter 5 / Basic Sockets Programming

Summary

In this chapter, we encountered the basic socket functions for the first
time. We learned about the parameters we pass to them and the values
they return. We learned some of the technical differences between
TCP and UDP. More importantly, we learned how to use the functions
by creating our first sockets application, the simple echo application.
We can now move on to more advanced technology, as we now know
the basics.

Chapter 5 / Basic Sockets Programming 161

Figure 5-6
Simple echo
server running

Figure 5-7
Simple echo
client running

This page intentionally left blank.

Chapter 6

I/O Operations

Introduction

A network input/output operation requires more than just knowing how
to send and receive data. We need to know when to start receiving the
data and how to set it up. This chapter discusses the input/output oper-
ations of socket network events. We will also learn a new way to send
data and how to modify the way our sockets act.

Detecting Network Events

To be able to start reading the socket for incoming data at the correct
time, we need to know when there is something to read. We could poll
the read function on the socket all the time, but that is not always a
good way to do it. We need to be able to wake up the read function
whenever there is any incoming data. The following functions are used
to accomplish this:

� select — Unix, Win32

� WSAAsyncSelect/WSAEventSelect — Win32

select (Unix, Win32)

int select(int maxfdp1, fd_set *readset, fd_set *writeset, fd_set *exceptset,
const struct timeval *timeout);

The select function is used to set the kernel to wake up the process
when a network event occurs. We can set the function to wake up the

163

process on any type of network event (writing, reading, and exception
condition pending) at the same time. Plus, we can set a timeout value
to make the process wake up after a certain amount of time.

The first parameter (int maxfdp1) defines the number of socket
descriptors to test for network events. Its value is set to the highest
socket descriptor to test plus one, because it is the number of
descriptors (and the descriptor values begin from 0). So if we want to
test our socket for network events, we should set this value to (at
least) the socket descriptor plus one.

The second, third, and fourth parameters (fd_set *readset,
fd_set *writeset, and fd_set *exceptset) define the net-
work events we want to test for. We discuss only the reading and
writing events in this book. These parameters are pointers to fd_set
type of data, which is used to store the notification of a possible net-
work event. After the select function is run, we check if the socket is
a member of a set by using the macro FD_SET. The macros are
explained below.

The fifth and last parameter (const struct timeval *time-

out) defines the timeout value for the function. This is a pointer to a
timeval structure, which holds two members: seconds and microsec-
onds. To make the function wait forever, we set this parameter to
NULL. We can set the timeout value to 0 seconds and 0 microseconds.
In that case, the function returns immediately after first checking for
the network events.

Win32 return values:

� Success: Positive number of ready descriptors, 0 on timeout

� Failure: SOCKET_ERROR

Unix return values:

� Success: Positive number of ready descriptors; 0 on timeout

� Failure: –1

Macros

The following four macros are used to modify and check the socket
descriptor sets:

� FD_ZERO

� FD_SET

� FD_CLR

� FD_ISSET

FD_ZERO resets a set so that no socket descriptors belong to it. It is a
good idea to do this before any other macro is used.

164 Chapter 6 / I/O Operations

FD_SET adds the socket descriptor to the set.
FD_CLR removes the socket from the set.
FD_ISSET checks if the socket descriptor is a member of the set.

WSAAsyncSelect (Win32)

int WSAAsyncSelect(SOCKET s, HWND hWnd, unsigned int wMsg, long lEvent);

This function is used to set Windows’ kernel to send a message to
notify of a network event on a socket. This system can provide infor-
mation about numerous network events, such as the following:

� FD_READ — Ready to read data

� FD_WRITE — Ready to write data

� FD_ACCEPT — Incoming connection

� FD_CLOSE — Socket closing

The first parameter (SOCKET s) defines the socket to monitor. This
does not have to be a connected socket, because we can also monitor
for incoming connections with this function. Note that datagram sock-
ets do not tell about incoming connections — only stream sockets do.

The second parameter (HWND hWnd) defines the window handle to
which the message is sent. The third parameter (unsigned int

wMsg) defines the message to send when the event defined by the next
parameter occurs. We can (and should) create our own message for
this. The fourth parameter (long lEvent) defines the network
event(s) to monitor. We can define multiple events at once by OR’ing
them together here, such as FD_READ | FD_WRITE.

Win32 return values:

� Success: 0

� Failure: SOCKET_ERROR

WSAEventSelect (Win32)

int WSAEventSelect(SOCKET s, WSAEVENT hEventObject, long lNetworkEvents);

This function sets an event object to receive a notification of the speci-
fied network events. The event object can then be used to see which
network event happened, if any. The network events we can specify are
exactly the same as in the WSAAsyncSelect function.

This function gives us some more breathing room because we do not
have to tie the network events to a window. We can specify any number
of event objects and then use them wherever we wish.

The first parameter (SOCKET s) defines the socket to monitor. The
second parameter (WSAEVENT hEventObject) defines the event

Chapter 6 / I/O Operations 165

object handle that will receive the notification of the network events.
The third parameter (long lNetworkEvents) defines the network
events to monitor. As with the WSAAsyncSelect function, we can
OR multiple events together.

Win32 return values:

� Success: 0

� Failure: SOCKET_ERROR

WSAWaitForMultipleEvents (Win32)

DWORD WSAWaitForMultipleEvents(DWORD cEvents, const WSAEVENT far *lphEvents,
BOOL fWaitAll, DWORD dwTimeOUT, BOOL fAlertable);

This function polls for an event to happen and actually tells us if there
is a network event that we should process. This function returns either
when there is a network event happening (one we are waiting for) or
when the timeout value has been reached. We can set this value to infi-
nite so the function returns only when an event occurs.

The first parameter (DWORD cEvents) is the number of events to
wait for. This is the number of members in the lphEvents array
(parameter two). At least one must be specified, but we cannot specify
more than what WSA_MAXIMUM_WAIT_EVENTS specifies.

The second parameter (const WSAEVENT far *lphEvents) is
a pointer to the array of network event objects. The third parameter
(BOOL fWaitAll) defines whether the function should wait for all
the events to occur before it returns. Possible values are TRUE and
FALSE (1 and 0). If set to FALSE, this function returns when at least
one event occurs.

The fourth parameter (DWORD dwTimeOUT) defines the timeout
value in milliseconds. If this value is reached, the function returns no
matter what, even if the fWaitAll flag is set to TRUE and the time-
out value is reached. The fifth and last parameter (BOOL
fAlertable) defines whether the function should return if there is
an I/O completion routine queued by the system for execution. Possible
values are TRUE and FALSE (1 and 0).

Win32 return values:

� Success: The event object that caused the function to return

Event Object

An event object is a normal Windows handle that is used to store the
state of a network event (or any other event). For example, if we want
to know when there is data to read on a socket, we create an event

166 Chapter 6 / I/O Operations

object, set it to inform us of incoming network events, and check its
state.

Let’s take a look at a more detailed example. First we create the
event object handle and a socket:

HANDLE readEvent;
SOCKET s;

We presume the socket is initialized properly somewhere. Then we set
the event object to receive notification of incoming data:

WSAEventSelect(s, readEvent, FD_READ);

And finally, when we are ready to read data from a socket, we check if
there is anything to read:

WSAEVENT EventArray[1];
EventArray[0] = SocketInputEvent;

int waitStatus = WSAWaitForMultipleEvents(1, EventArray, FALSE, WSA_INFINITE,
FALSE);

Multithreading

It is safe to say that multithreading is a must in a non-iterative network
application. It is the only way to keep all the clients handled properly by
the server since there can be multiple clients connected to one server
at a time. If each client waited for the server to handle the other clients
first, we could call our system “Wait Wait Wait.”

NOTE A UDP server does not need multithreading as much as a
TCP server. This is because a UDP client can just “throw in” a mes-
sage to the server, then wait for a response from the server — and
we are done. The server could handle all the clients on one socket,
thus removing one reason for multithreading. It depends on the
design of the UDP network application whether we should use
multithreading or not.

What Is Multithreading?

Before we tell you how to make our application multithreaded, let’s
take a moment to think about what multithreading really is.
Multithreading means that there is more than one process running in
one application. These processes run constantly and at the same time.
All the threads and the main application share the same memory. This
means that if you have a global variable, it can be accessed and modified
by each thread. Each process usually has its own loop to keep it run-
ning. A normal single-threaded application has only one main loop,

Chapter 6 / I/O Operations 167

which is the backbone of the application. When this loop breaks, the
application terminates. This is the same for every extra thread. When a
thread reaches the end of the thread function, it terminates and the
thread is destroyed. When the main application ends, so do the threads.

Although the threads seem to be running all at the same time, this is
not actually true on a single-processor system. One processor can pro-
cess only one thing at a time, so the threads are really run one by one,
but only a little bit at a time.

An example from real life explains this best. Imagine you have three
papers to write. You could write one completely, then write the next
one, and so on. But if you wanted to write all the papers at the same
time (for some weird reason), you would have to write one word at a
time for each paper. First, you write one word on the first paper, then
write one on the next paper, and lastly write one on the third paper. You
are not really writing them at the same time, but if you do it really fast
(I mean really fast), it seems like you actually are writing them
simultaneously, because the words seem to appear on the papers at the
same time. This is exactly the same for multithreading. It is all about
speed.

CreateThread (Win32)

HANDLE CreateThread(LPSECURITY_ATTRIBUTES lpThreadAttributes, DWORD
dwStackSize, LPTHREAD_START_ROUTINE lpStartAddress,
LPVOID lpParameter, DWORD dwCreationFlags, LPWORD
lpThreadId);

The CreateThread function creates a new thread on Windows.
The first parameter (LPSECURITY_ATTRIBUTES

lpThreadAttributes) is a pointer to a security attributes struc-
ture. In this book, we always set this to NULL. The second parameter
(DWORD dwStackSize) defines the stack size for the thread. If this is
set to 0, the default value is used. This value is the size of the calling
thread’s stack. The third parameter (LPTHREAD_START_ROUTINE
lpStartAddress) specifies the thread’s routine function.

The fourth parameter (LPVOID lpParameter) is a pointer to the
parameter that will be passed to the thread’s routine function. The fifth
parameter (DWORD dwCreationFlags) defines the flags for how to
create the thread. We can only set this to 0 or CREATE_SUSPENDED.
If the latter option is used, the thread starts in suspended mode and
will not start before the ResumeThread function is called. The sixth
parameter (LPWORD lpThreadId) is a pointer to a variable that will
receive the thread identifier.

168 Chapter 6 / I/O Operations

Win32 return values:

� Success: Handle to the thread

� Failure: NULL

pthread_create (Unix)

pthread_create(pthread_t *tid, const pthread_attr_t *attr, void *(*func)
(void *), void *arg);

The pthread_create function creates a new thread on Unix. This is
similar to Windows’ CreateThread function.

The first parameter (pthread_t *tid) is a pointer to the variable
that will receive the thread identifier. The second parameter (const
pthread_attr_t *attr) is a pointer to the thread attributes vari-
able. Usually we set this parameter to NULL to use the defaults. The
third parameter (void *(*func)(void *)) defines the thread
routine function. This is similar to the Windows CreateThread func-
tion’s lpStartAddress parameter. The last parameter (void
*arg) specifies the parameter to pass to the thread routine function.
This is similar to the Windows CreateThread function’s
lpParameter parameter.

Unix return values:

� Success: 0

� Failure: Non-zero

I/O Strategy

Each network application has its own input/output strategy for how
data flow is controlled within the application. For example, will the
server open multiple sockets for the clients (UDP) or will it use
multithreading? Let’s take a look at some of the possible strategies:

� Blocking I/O

� Non-blocking I/O

� Signal-driven I/O

� Multiplexing I/O

Blocking I/O

Blocking I/O is the simplest form of I/O strategies. As we have already
learned, a socket can be blocking or non-blocking. A blocking socket
means that some of the socket functions we run, such as passing a
blocking socket as a parameter, wait for the action to be accomplished

Chapter 6 / I/O Operations 169

before they return. For example, if we try to read data off a blocking
socket, the read function we use will not return before the data is read.
If there is no one sending anything to that socket, the function will
block until there is someone sending data to it. Each socket is blocking
by default.

Non-blocking I/O

We can set a socket to non-blocking if we want to. Then the socket
functions will return even if the action cannot be accomplished immedi-
ately. Usually this means that we need to loop the function to create our
own blocking effect. This is called polling. If we do not poll the incom-
ing data, we would most likely miss it because the data must have
reached the local host before we call the function to read the data.

Signal-driven I/O

We do not always have to use the data reading function to monitor the
socket for incoming data. We can set up our operating system to signal
us when incoming data is available for us to read. Then all we have to
do is call the function to read the data from the socket. The obvious
advantage in this strategy compared to the two previous ones is that we

170 Chapter 6 / I/O Operations

Figure 6-1
Blocking I/O

Figure 6-2
Non-blocking
I/O

can do other things while we wait for the data to come in. The applica-
tion that waits for data input can run the rest of the application when
there is no data to be read. Then when data input exists, everything
else is stopped for the time it takes to read the data and possibly pro-
cess it.

Multiplexing I/O

Another way to avoid using the actual data reading function to tell if
there is incoming data is to use the select function. It is used simi-
larly to a blocking socket read function call, as the select function
will stop and wait for the data to come in. Multiplexing means that we
have multiple sources, but we use only one at a time. We need to be
able to choose the source that has something to offer us. We use the
select function for that. This is the advantage of multiplexing I/O; we
can wait for more than one socket to have data to read with one func-
tion call.

By combining these I/O strategies with multithreading, we can unleash
all the power of our network applications.

Chapter 6 / I/O Operations 171

Figure 6-3
Signal-driven
I/O

Figure 6-4
Multiplexing
I/O

I/O Control

Now that we know some of the possible I/O strategies, we need to
know how to get our sockets to work using the strategy we choose.
Some do not need any extra setting up, but some do. Also, we can cre-
ate some nice features for our network application by controlling the
I/O mode of our sockets. To control the input/output mode of our sock-
ets, we use the following two functions:

� ioctl/ioctlsocket

� setsockopt

ioctl (Unix)/ioctlsocket (Win32)

int ioctl(int fd, int request, … /* void *arg */);
int ioctlsocket(SOCKET s, long cmd, u_long FAR *argp);

These two functions work alike; ioctl is for Unix and ioctlsocket
is for Windows.

The functions are used to control the I/O mode of the socket. The
most common use for these functions is setting the blocking/non-block-
ing mode of a socket.

The first parameter (int fd/SOCKET s) defines the socket to
control. The second parameter (int request/long cmd) is the
command to give the socket. This is used with the third parameter
(void *arg/u_long FAR *argp), which tells the function how to
give out the command.

The Windows version (ioctlsocket) does not have all the com-
mands that the Unix version (ioctl) has. The only command we
really use within this book is FIONBIO, which sets/clears the
non-blocking flag of the socket.

Win32 return values:

� Success: 0

� Failure: SOCKET_ERROR

Unix return values:

� Success: 0

� Failure: –1

An example best explains the usage of this function. To set a socket
into non-blocking mode, we call the I/O control function like this:

u_long on = 1;

ioctl(mysocket, FIONBIO, &on); // Unix
ioctlsocket(mysocket, FIONBIO, &on); // Windows

172 Chapter 6 / I/O Operations

To set the non-blocking mode off:

u_long off = 0;

ioctl(mysocket, FIONBIO, &off); // Unix
ioctlsocket(mysocket, FIONBIO, &off); // Windows

setsockopt/getsockopt (Unix, Win32)

int setsockopt(int sockfd, int level, int optname, const void *optval,
socklen_t optlen);

int getsockopt(int sockfd, int level, int optname, void *optval,
socklen_t *optlen);

These functions are used to set and get the socket options. There are
numerous socket options available, but we discuss only a few in this
book.

The first parameter of both functions (int sockfd) defines the
socket to set the option for. The second parameter of both functions
(int level) specifies the level at which the options are defined.
Possible values (for compatibility issues) are SOL_SOCKET and
IPPROTO_TCP. The third parameter is also the same for both func-
tions (int optname); it defines the actual option to set.

The fourth parameter of setsockopt (const void *optval)
is a pointer to the buffer where the value for the option is stored. The
fourth parameter of getsockopt (void *optval) is a pointer to
the buffer where the value of the option will be stored.

The fifth parameter of both functions (socklen_t optlen/

socklen_t *optlen) defines the size of the buffer used in parame-
ter four.

In this book we use only the SOL_SOCKET level, as the other lev-
els are beyond the scope of this book. Here are some options from the
SOL_SOCKET level that we should be aware of:

� SO_BROADCAST — Set/get broadcasting on/off

� SO_LINGER — Set/get lingering on/off

� SO_RCVBUF — Set/get receive buffer size

� SO_SNDBUF — Set/get send buffer size

� SO_TYPE — Get socket type

Win32 return values:

� Success: 0

� Failure: SOCKET_ERROR

Chapter 6 / I/O Operations 173

Unix return values:

� Success: 0

� Failure: –1

Let’s take a look at an example of how to make our socket linger on a
call to close/closesocket to make sure all the data is sent before
the socket is closed:

struct linger Ling;

Ling.l_onoff = 1;
Ling.l_linger = 0;

setsockopt(mysocket, SOL_SOCKET, SO_LINGER, (const char *) &Ling,
sizeof(struct linger));

When we want to close the socket, we should put the close/
closesocket function call in a loop that loops as long as the function
returns succesfully:

shutdown(mysocket, SD_BOTH); // Windows

int ret = WSAEWOULDBLOCK;

while(ret == WSAEWOULDBLOCK)
ret = closesocket(mysocket); // Windows

--

shutdown(mysocket, SD_RDWR); // Unix

int ret = WSAEWOULDBLOCK;

while(ret == WSAEWOULDBLOCK)
ret = close(mysocket); // Unix

shutdown (Unix, Win32)

int shutdown(int sockfd, int howto);

This function is used to disable sending and receiving on a socket. It
does not close the socket, but depending on the parameters we pass to
it, the socket will not be able to send or receive (or both) any more
data.

The first parameter (int sockfd) defines the socket to shut
down. The second parameter (int howto) specifies how to shut
down the socket. Possible values are listed in Table 6-1.

174 Chapter 6 / I/O Operations

Table 6-1: howto parameter values

OS Shut Reading Shut Writing Shut Both

Unix SHUT_RD SHUT_WR SHUT_RDWR

Windows SD_RECEIVE SD_SEND SD_BOTH

Win32 return values:

� Success: 0

� Failure: SOCKET_ERROR

Unix return values:

� Success: 0

� Failure: –1

Broadcasting

Broadcasting is a very useful way of sending data. When you broadcast,
you send to everybody on the network with only one call to the sending
function. There are some restrictions however, which make broadcast-
ing much less interesting than it first sounds. First of all, it can be used
only with datagram sockets. This means that we need to use UDP if we
want to broadcast. The second, and much more limiting, issue is that it
can be used only on a local area network. We cannot broadcast mes-
sages through the Internet, because broadcasting works using a unique
broadcast IP address that every LAN has. Usually it is of the form
subnet.255. For example if our subnet is 192.168.0, the broadcast
address is 192.168.0.255. We can also use a “global” broadcast address,
255.255.255.255, that works on all LANs.

NOTE IPv6 does not support broadcasting. IPv6 uses multicasting
instead, but that is beyond the scope of this book.

Searching for Servers

One very good use for broadcasting is to search for available servers on
a LAN. Anyone who has played a network game on a LAN knows that it
is annoying to have to continually enter the IP address of a certain
server to be able to connect to it. And if you do not know what servers
there are to join, you have to find that out beforehand. Broadcasting is a
solution for this. We assume that all the servers use the same port and
that the client application (the game) knows this port number. Now all
we need to do is broadcast to that port number and wait for the servers

Chapter 6 / I/O Operations 175

to send their info to us. All the servers that are up and running in the
LAN will receive the broadcast message. They can find out the client’s
address from the datagram and send a reply to that address. The client
will then build a list of servers that replied in a certain amount of time.

Broadcast Function

To make our socket broadcast, we need to set the socket option of it as
shown in the following code. We also need to create a datagram socket
and fill in the address information so that the data is sent to the broad-
cast address. In this example, we use the address 255.255.255.255,
which works on all LANs as a broadcast address.

void Broadcast(char *buf, size_t count)
{

// Define on
const int on = 1;

// Create a datagram socket
SOCKET sock;
sock = socket(AF_INET, SOCK_DGRAM, 0);

struct sockaddr_in servaddr;
socklen_t len;

// Use the example broadcast address
u_long inetAddr = inet_addr("255.255.255.255");

// Fill address information structure
memset(&servaddr, 0, sizeof(struct sockaddr_in));
servaddr.sin_family = AF_INET;
servaddr.sin_port = htons(9009);
servaddr.sin_addr.s_addr = inetAddr;

len = sizeof(servaddr);

// Set socket broadcasting option on
setsockopt(sock, SOL_SOCKET, SO_BROADCAST,
(const char *) &on, sizeof(on));

// Broadcast!
sendto(sock, buf, count, 0,
(struct sockaddr *) &servaddr, len);

}

Now let’s discuss the code.
First, we must define the socket option switch in a variable because

the setsockopt function always retrieves the switch from a variable.

// Define on
const int on = 1;

176 Chapter 6 / I/O Operations

Then we create a normal datagram socket to be used in the broadcast-
ing operation.

// Create a datagram socket
SOCKET sock;
sock = socket(AF_INET, SOCK_DGRAM, 0);

Next, the address information structure must be filled with the correct
information. The IP address is set to the example broadcast address —
255.255.255.255. The port number is set to 9009, assuming that is the
port that all the recipients use.

// Use the example broadcast address
u_long inetAddr = inet_addr("255.255.255.255");

// Fill address information structure
memset(&servaddr, 0, sizeof(struct sockaddr_in));
servaddr.sin_family = AF_INET;
servaddr.sin_port = htons(9009);
servaddr.sin_addr.s_addr = inetAddr;

And finally, the socket option SO_BROADCAST is set on and we broad-
cast the message using the normal sendto function.

// Set socket broadcasting option on
setsockopt(sock, SOL_SOCKET, SO_BROADCAST,

(const char *) &on, sizeof(on));

// Broadcast!
sendto(sock, buf, count, 0,

(struct sockaddr *) &servaddr, len);

Summary

In this chapter we learned what I/O strategies we can use in our net-
work applications and how to implement them. We also learned the
concept of multithreading and the reasons to use it. Along with the I/O
methods, we learned a new way to send data efficiently in a LAN — by
broadcasting. We are now ready to create our own network library.

Chapter 6 / I/O Operations 177

This page intentionally left blank.

Part II

Tutorials

The tutorial section leads you step by step through how to create a
working online game. Since we wish to focus on the network program-
ming side, we have supplied you with a simple OpenGL-based 2D
graphics library.

The first tutorial consists of an introduction to our graphics library. It
explains the basics of the library and also gives you code examples to
experiment with. Then we move on to developing our network library,
which is reusable so that it can be used in your own online titles as well
as in our sample online game. Once we have the foundations, we then
move on to how to implement a login and lobby system that is ready for
implementing our online game. In the final tutorial, we develop our
final working online game that you can both learn from and expand
upon.

In creating these tutorials, we have aimed to give you a practical
hands-on approach to learning how to create an online game. We have
found that other books tell you more about how things work rather than
explain how to actually get it working so you can experiment with it.

Remember that all the source code for the tutorials can be found on
the companion CD.

179

This page intentionally left blank.

Tutorial 1

Using 2DLIB

Introduction

In this first tutorial, we cover the use of our simple 2D OpenGL library
that we will be using in the following tutorials to create our online net-
work game. The reason we are covering this is to keep confusing
graphics code from getting in the way of the core network code, making
the network code easier for us to understand. You will quickly be able
to understand and use our 2D library, but if you prefer, you can use your
own DirectX or OpenGL routines.

Configuring Visual Studio

The OpenGL library and our 2D library are located on the companion
CD. First, you must add the 2D library’s API directory into the Visual
Studio environment. To do this select Tools, Options… from the main
Visual Studio menu. Now select the Directories tab on the dialog box
that is visible in the center of the screen.

181

Next, add the library’s API directory to both the Include files and
Library files. This will allow Visual Studio to find the 2D library when
you try to compile a program that uses it.

Finally, you need to add the OpenGL library into Visual Studio. You
do this in the same way except you need to add the Include folder into
the Include directories and the Library folder into the Library
directories.

If you would like additional information on the creation and use of
static link libraries, see Chapter 1.

Creating a Skeleton Project

It is generally a good idea to create basic code that never changes so
you can reuse it in future programs and projects. Here we create a sim-
ple windowed program using the 2D graphics library that will create a
window on the screen. This skeleton can be developed further into any
Windows application, as you will see throughout this online game
tutorial.

First, we must create a workspace for our project. This entails creat-
ing a project, adding our 2D library and OpenGL into the workspace,
and finally adding a main source file to code in.

Creating the Workspace

To create our workspace, select File, New… from the main Visual Stu-
dio menu. Next, click the Projects tab and select Win32 Application (not
a console application). Set where you wish the project to be created
(i.e., c:\projects\) and give the project a name (i.e., OnlineGame). Once
you click OK, the next window will ask which type of application you
would like to create. For this project, leave it as an empty project and

182 Tutorial 1 / Using 2DLIB

Figure 1

click Finish. Simply click OK on the next screen, as it is simply a sum-
mary of what you have just done.

Now that we have our workspace created, we need to add the 2D
library into the workspace so it is compiled with our code (so the func-
tions are available to us).

Adding the Static Libraries

To add the static libraries, select Project, Settings from the main Visual
Studio menu. On the dialog box that appears, change the drop-down
box at the top left from Win32 Debug to All Configurations. This means
that when we add in the library it will be included in both the debug and
release versions of our game code. Next select the Link tab on the
right of the dialog and add the following before kernel32.lib:

opengl32.lib glu32.lib glaux.lib 2dlib.lib

This will add the required OpenGL libraries and our 2D library into the
workspace when we compile the program.

Adding the Source File

Finally, we need to add our main source file into the project. To do this,
select File, New… from the main Visual Studio menu and select the
Files tab on the dialog that appears. Now select C++ Source File and
enter “main” in the File name edit box. Click OK and the main source
file will be added into our project.

Tutorial 1 / Using 2DLIB 183

Figure 2

Creating a Basic Windowed Application with
2DLIB

Our workspace is now ready to have code added. For the 2D library to
function, we need to create a Windows message loop and a callback
function for the window, which is passed into the 2D library as a param-
eter. Now we will cover the main parts of the main program. The
complete code can be found at the end of this section.

The WinMain Function

The following code segment is the main Windows message loop, but it
also contains our initialization code and main drawing loop.

int WINAPI WinMain(HINSTANCE hThisInst, HINSTANCE hPrevInst, LPSTR lpszArgs,
int nWinMode)

{

MSG msg;

GFX_Init("App Title", 640, 480, 16, 0, WndProc);

while(msg.message != WM_QUIT)
{

if(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

}
else
{

GFX_Begin();
{

}
GFX_End();

}
}

GFX_Shutdown();
return msg.wParam;

}

The GFX_Init() function sets up our window for use by the 2D
graphics library. The first parameter is the title of the window, although
this is not relevant if you wish to create a full-screen application. The
next two parameters determine the width and height of the window in
pixels. The fourth specifies the color depth you wish to use; usually
this is set to 16 bits per pixel, but other values such as 24 or 32 can be
used too. Next is a flag to determine whether you wish to run the

184 Tutorial 1 / Using 2DLIB

application full screen or not; set this to 0 for windowed or 1 for full-
screen mode. The final parameter is a pointer to the Windows proce-
dure function that is explained in the next section.

GFX_Init("App Title", 640, 480, 16, 0, WndProc);

Next is the message loop for Windows; this controls all the Windows
messages that are required to allow the program to run correctly in the
Windows environment.

while(msg.message != WM_QUIT)
{

if(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

}
else
{

GFX_Begin();
{
}
GFX_End();

}
}

As you can see in the preceding code, the Windows messaging loop is a
simple while loop that continues until a quit message is received. The
PeekMessage function is a faster version of the GetMessage function
and is the optimal way to get Windows messages. This is not important
for us, but the else part of the if statement is, however. This is where we
place all our 2D drawing commands; it is, if you like, our game loop.

Once the 2D library is initialized using the GFX_Init() function,
you must call GFX_Begin() before you start drawing and then
GFX_End() once everything is drawn. The first function is used to
clear the drawing buffer and ready it for the next frame of graphics to
be drawn to it. The ending function is used to swap the buffer onto the
visible screen so the user can see it without any shearing or other
nasty graphical glitches.

Finally, once the user quits the program, the graphics library must
be shut down. To do this, we simply call GFX_Shutdown() after the
while loop. This closes the graphics library and frees any memory that
was allocated internally by the 2D graphics library.

The Windows Procedure

Every time our window receives a Windows message, such as a key
being pressed on the keyboard, this function is called to process the
message correctly. The code that follows is the entire Windows
procedure.

Tutorial 1 / Using 2DLIB 185

LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{

switch (uMsg)
{

case WM_CLOSE:
{

PostQuitMessage(0);
return 0;

}

case WM_KEYDOWN:
{

keys[wParam] = TRUE;
return 0;

}

case WM_KEYUP:
{

keys[wParam] = FALSE;
return 0;

}

case WM_SIZE:
{

GFX_Resize(LOWORD(lParam),HIWORD(lParam));
return 0;

}
}

// Pass all unhandled messages to DefWindowProc
return DefWindowProc(hWnd,uMsg,wParam,lParam);

}

In basic terms, the function is simply a switch statement that reacts
correctly to different events (cases) in Windows. If the function has no
handling routine for an event, it simply passes it back to Windows to
deal with accordingly.

It is possible to add other event handles to this procedure, but the
four we have included in this skeleton application are all that are
required for now. Let’s take a look at the events in a little more detail.

The WM_CLOSE Event

case WM_CLOSE:
{

PostQuitMessage(0);
return 0;

}

This event is triggered when the user clicks on the X button at the top
right of a window or when a close message is manually sent to the win-
dow. When a WM_CLOSE message is sent, this routine sends a WM_
QUIT message that, if you remember from earlier, is the condition for

186 Tutorial 1 / Using 2DLIB

our main while loop (i.e., when a WM_QUIT message is received, our
program will shut down and exit).

The WM_KEYDOWN Event

case WM_KEYDOWN:
{

keys[wParam] = TRUE;
return 0;

}

In the 2D library, we have defined an array that allows for easy use of
the keyboard without having to learn DirectInput or another similar
input library. When a key has been pressed on the keyboard, this rou-
tine sets the correct key in the array to TRUE, meaning that the key is
currently down. Later in this tutorial we will cover how to use the key-
board for input.

The WM_KEYUP Event

case WM_KEYUP:
{

keys[wParam] = FALSE;
return 0;

}

This routine works in the same way as the WM_KEYDOWN routine
except that it handles the event of a key being released on the key-
board. When the key has been released, it sets the correct value in the
keys array to FALSE, meaning the key is not being pressed.

The WM_SIZE Event

case WM_SIZE:
{

GFX_Resize(LOWORD(lParam),HIWORD(lParam));
return 0;

}

This event handles the resizing of a windowed mode application. It is
not relevant for full-screen applications, but it does no harm to leave it
in. It tells the 2D library the new width and height of the window so
that it can react accordingly. (The width is the low word of the lParam
and the height is the high word of the lParam.)

The Complete Code

The final part we require is what files to include. We need to include
the Windows header file (since we are creating a Windows application),
the three OpenGL header files for the 2D library, and the 2D library’s
header files. Therefore, our complete code listing for the skeleton
application resembles the following:

Tutorial 1 / Using 2DLIB 187

#include <windows.h>
#include <gl/gl.h>
#include <gl/glu.h>
#include <gl/glaux.h>
#include <2dlib.h>

// WINDOWS PROCEDURE
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{

switch (uMsg)
{

case WM_CLOSE:
{

PostQuitMessage(0);
return 0;

}

case WM_KEYDOWN:
{

keys[wParam] = TRUE;
return 0;

}

case WM_KEYUP:
{

keys[wParam] = FALSE;
return 0;

}

case WM_SIZE:
{

GFX_Resize(LOWORD(lParam),HIWORD(lParam));
return 0;

}
}

// Pass all unhandled messages to DefWindowProc
return DefWindowProc(hWnd,uMsg,wParam,lParam);

}

// WINDOWS MESSAGE LOOP AND APPLICATION ENTRY POINT
int WINAPI WinMain(HINSTANCE hThisInst, HINSTANCE hPrevInst, LPSTR lpszArgs,

int nWinMode)
{

MSG msg;

GFX_Init("Skeleton App", 640, 480, 16, 0, WndProc);

while(msg.message != WM_QUIT)
{

188 Tutorial 1 / Using 2DLIB

if(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

}
else
{

GFX_Begin();
{

}
GFX_End();

}
}
GFX_Shutdown();
return msg.wParam;

}

If everything has gone according to plan, when you compile and exe-
cute the preceding code you should be able to see the following screen:

Not very exciting, is it? However, it is very useful as we now have the
foundation for our 2D graphics engine, meaning we can easily use the
2D library to create primitives and bitmapped graphics on the screen.

Tutorial 1 / Using 2DLIB 189

Figure 3

Using the 2DLIB Graphics Routines

Now we will cover all the graphical functions in the 2D library with an
explanation of how to use them. The final sections of this tutorial dem-
onstrate a couple of examples of how to use these functions with the
skeleton application. Remember that all graphics functions must be
placed between the GFX_Begin() and GFX_End() functions or the
graphics will not be visible on the screen.

2D Positions on the Screen

For the x coordinates, the values start from 0 at the left-hand side of
the application and end at the width of your application minus 1. The y
coordinates start from 0 at the top of your application and end at the
height of your application minus 1. Figure 4 displays what the screen
coordinates would be like for a 640 x 480 application in the format
(x, y).

Use of Colors

Each primitive drawing function in the library has three parameters at
the end that specify the red, green, and blue values for what you wish
to draw. These values range as integers from 0 to 255, where 0 is black
and 255 is full brightness. Therefore, if you wanted your color to be
bright red, you would use 255 red, 0 green, and 0 blue.

190 Tutorial 1 / Using 2DLIB

Figure 4

Plotting a Single Pixel

void GFX_Pixel(int x, int y, int r, int g, int b);

The GFX_Pixel() function will display a single pixel on the screen at
the specified (x, y) position. The position is specified by the first two
parameters of the function, the first being x and the second being the y
position. The final three parameters determine the color of the pixel in
RGB format. (See the information about colors in the “Use of Colors”
section.)

Drawing a Line

void GFX_Line(int x1, int y1, int x2, int y2, int r, int g, int b);

The GFX_Line() function draws a line between two points. The first
two parameters are the (x, y) position of the first point. The next two
parameters are the (x, y) position of the point to connect the first point
to. The final three are to specify the color in RGB format.

Drawing a Rectangle/Filled Rectangle

void GFX_Rect(int x1, int y1, int x2, int y2, int r, int g, int b);

void GFX_RectFill(int x1, int y1, int x2, int y2, int r, int g, int b);

The GFX_Rect() and GFX_RectFill() functions draw a rectangle
based on the two points you specify. The first two parameters deter-
mine the top-left corner for the rectangle and the next two specify the
bottom-right corner for the rectangle. Again, the final three determine
the color in RGB format.

The first function draws an outlined rectangle in the specified color,
whereas the second draws a filled rectangle in the specified color.

Drawing a Triangle/Filled Triangle

void GFX_Tri(int x1, int y1, int x2, int y2, int x3, int y3, int r, int g,
int b);

void GFX_TriFill(int x1, int y1, int x2, int y2, int x3, int y3, int r,
int g, int b);

The GFX_Tri() and GFX_TriFill() functions allow you to draw
triangles and filled triangles on the screen. The first six parameters
determine the three two-dimensional coordinates that are required to
construct a triangle. The final three then determine the red, green, and
blue values the same way as the other primitive functions.

Tutorial 1 / Using 2DLIB 191

Graphic Loading Functions

Our 2D library has support for Windows bitmaps and 24-bit and 32-bit
uncompressed Truevision Targa format. First, we need to declare a
variable that will hold our graphic data. You do this as follows:

GFX_IMAGE2D my_image;

This creates a variable called my_image that you can use with the
graphics loading commands in the library to load pictures from your
hard drive in the application.

Next, you want to actually load an image. Let’s say we have a Win-
dows bitmap image called brick.bmp. We would call the following
function to load it into our my_image variable. Notice you pass a
pointer to the GFX_IMAGE2D variable, followed by the filename of the
graphic you wish to load.

GFX_LoadBitmap(&my_image, “brick.bmp”);

The Truevision Targa loading function works in the same manner. If
you have an image called phone.tga, you would load it like this:

GFX_LoadTarga(&my_image, “phone.tga”);

That is all there is to loading graphics. Here are the prototypes for the
graphics loading functions for your reference:

void GFX_LoadBitmap(GFX_IMAGE2D *pImage, char *filename);

void GFX_LoadTarga(GFX_IMAGE2D *pImage, char *filename);

Graphics Display (Blitting) Function

Once you have successfully loaded in your graphics, you use the follow-
ing function to display them on the screen:

void GFX_Blit(GFX_IMAGE2D *pImage, int x, int y, int w, int h, float rotate);

The first parameter is a pointer to a GFX_IMAGE2D. You simply pass a
pointer to a graphic you have loaded using one of the loading functions
explained previously. Next you specify the (x, y) position using the sec-
ond and third parameters of the function. The function also handles
image scaling so you can state the width and height at which the image
is to be drawn on the screen. These are set in the forth and fifth param-
eters, respectively. Finally, the function handles image rotation in
degrees. Therefore, you can specify a floating-point value between 0.0
and 360.0 for the image to be drawn at (the image rotates around its
center point).

192 Tutorial 1 / Using 2DLIB

For example, if you wanted to display an image you loaded into a
my_image variable at point (25, 50) with a width of 100, a height of 150,
and no rotation, you would call the following function:

GFX_Blit(&my_image, 25, 50, 100, 150, 0.0);

If you then decided you wanted it in the same position and with the
same dimensions but at an angle of 30 degrees, the function would be
as follows:

GFX_Blit(&my_image, 25, 50, 100, 150, 30.0);

That is all there is to the graphical side of the library. As you can see,
there is nothing very complicated in it, and it simplifies many of the ini-
tialization procedures and other such things.

Keyboard Input Method

This is a very simple method of getting key input. We would really rec-
ommend using a library such as DirectInput, but this makes the process
simple and it does what we require it to do for now.

To check a key on the keyboard, simply place an if statement after
the GFX_End() function as follows:

if(keys[VkKeyScan('a')])
{

// place what is to be done here
}

The preceding if statement would check if the “a” key had been
pressed. The “a” can be replaced with any other character, symbol, or
number from the keyboard. For example, if you wished to check if the
“]” key had been pressed you would use this statement:

if(keys[VkKeyScan(']')])
{

// place what is to be done here
}

There are special cases such as the function keys (F1, F2, etc.) and
other keys like the Spacebar and Return. Table 1 lists most of these
special cases and an if statement follows that shows how to use a spe-
cial key.

Tutorial 1 / Using 2DLIB 193

Table 1: Special keys

Statement Description

VK_F1 Function key F1

VK_F2 Function key F2

VK_F3 Function key F3

VK_F4 Function key F4

VK_F5 Function key F5

VK_F6 Function key F6

VK_F7 Function key F7

VK_F8 Function key F8

VK_F9 Function key F9

VK_F10 Function key F10

VK_F11 Function key F11

VK_F12 Function key F12

VK_INSERT Insert key

VK_HOME Home key

VK_PAGE_UP Page Up key

VK_DELETE Delete key

VK_END End key

VK_PAGE_DOWN Page Down key

VK_UP Arrow key up

VK_DOWN Arrow key down

VK_LEFT Arrow key left

VK_RIGHT Arrow key right

VK_ESCAPE Escape key

VK_SPACE Spacebar

VK_CONTROL Control key

VK_ALT Alt key

VK_ADD Numeric keypad + key

VK_SUBTRACT Numeric keypad – key

VK_MULTIPLY Numeric keypad * key

VK_DIVIDE Numeric keypad / key

194 Tutorial 1 / Using 2DLIB

Statement Description

VK_EQUALS = key

VK_TAB Tab key

Unlike the other if statements where you use a function (VkKeyScan)
to get the correct value for the character, you simply place the VK_
value as follows:

if(keys[VK_SPACE])
{

// place what is to be done here
}

The preceding example would check to see if the Spacebar had been
pressed; if so, it would execute the code within the if statement.

2DLIB Example 1 — Moving
Primitives with the Cursor Keys

In this first example application, we create a program that allows the
user to move a filled rectangle around the screen using the cursor keys,
but not outside the borders of the application. In addition, the user will
be able to select whether the rectangle is red, green, or blue by press-
ing r, g, or b, respectively. The complete code listing for this example is
at the end of this section.

First, we must set up a project file for this application. This is done
in exactly the same manner as the skeleton application that was
explained earlier in this tutorial. Once we have the skeleton application
running, the first thing we must do is create variables to store the posi-
tion, dimensions, and color of the rectangle. We declare these globally
as follows:

int rect_x, rect_y; // (x, y) position
int rect_w, rect_h; // width and height

float rect_r; // red color
float rect_g; // green color
float rect_b; // blue color

Next, after the initialization code for 2DLIB, we want to set these vari-
ables for the rectangle. This is done as follows:

rect_x = 10; // x position is 10
rect_y = 10; // y position is 10
rect_w = 100; // width is 100 pixels
rect_h = 100; // height is 100 pixels

Tutorial 1 / Using 2DLIB 195

rect_r = 255.0; // red is full intensity
rect_g = 0.0; // no blue
rect_b = 0.0; // no green

Now, when we draw our rectangle it will appear at position (10, 10) and
be 100 pixels in both height and width. In addition, we have set the red
value to the maximum and the green and blue to the minimum, making
the rectangle appear a bright red color. In the drawing loop, we will
then place the following function to draw it:

GFX_RectFill(rect_x, rect_y, rect_x+rect_w, rect_y+rect_h, rect_r, rect_g,
rect_b);

This will draw the filled rectangle at the position we specified, using
the values from the variables we previously declared. For more infor-
mation on this function, see the “Using the 2DLIB Graphics Routines”
section.

Finally, we wish to be able to move the rectangle around the screen,
so we need to have the correct keyboard code to do this. Here is what
the movement code should look like:

if(keys[VK_UP])
{

if(rect_y > 0)
rect_y--;

}
if(keys[VK_DOWN])
{

if(rect_y+rect_h < 480)
rect_y++;

}
if(keys[VK_RIGHT])
{

if(rect_x+rect_w < 640)
rect_x++;

}
if(keys[VK_LEFT])
{

if(rect_x > 0)
rect_x--;

}

This simply adjusts the variables for the rectangle based on which
arrow key the user presses on the keyboard. The colors work in a simi-
lar fashion, as shown below:

if(keys[VkKeyScan('r')])
{

rect_r = 255.0;
rect_g = 0.0;
rect_b = 0.0;

}
if(keys[VkKeyScan('g')])

196 Tutorial 1 / Using 2DLIB

{
rect_r = 0.0;
rect_g = 255.0;
rect_b = 0.0;

}
if(keys[VkKeyScan('b')])
{

rect_r = 0.0;
rect_g = 0.0;
rect_b = 255.0;

}

This code checks whether r, g, or b has been pressed, and if so, changes
the rectangle variables to set the specified color.

That covers everything for our first example. When you compile the
following code, you should be able to move the rectangle around with
the arrow keys and change the color with the r, g, and b keys.

Complete Code Listing for Example 1

#include <windows.h>
#include <gl/gl.h>
#include <gl/glu.h>
#include <gl/glaux.h>
#include <2dlib.h>

// APPLICATION SPECIFIC

int rect_x, rect_y; // (x, y) position
int rect_w, rect_h; // width and height

float rect_r; // red color
float rect_g; // green color
float rect_b; // blue color

// WINDOWS PROCEDURE

LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{

switch (uMsg)
{

case WM_CLOSE:
{

PostQuitMessage(0);
return 0;

}

case WM_KEYDOWN:
{

keys[wParam] = TRUE;
return 0;

}

Tutorial 1 / Using 2DLIB 197

case WM_KEYUP:
{

keys[wParam] = FALSE;
return 0;

}

case WM_SIZE:
{

GFX_Resize(LOWORD(lParam),HIWORD(lParam));
return 0;

}
}

// Pass all unhandled messages to DefWindowProc
return DefWindowProc(hWnd,uMsg,wParam,lParam);

}

// WINDOWS MESSAGE LOOP AND APPLICATION ENTRY POINT

int WINAPI WinMain(HINSTANCE hThisInst, HINSTANCE hPrevInst, LPSTR lpszArgs,
int nWinMode)

{

MSG msg;

// Initialize 2DLIB
GFX_Init("2DLIB - Example 1", 640, 480, 16, 0, WndProc);

// Set up the rectangle
rect_x = 10; // x position is 10
rect_y = 10; // y position is 10
rect_w = 100; // width is 100 pixels
rect_h = 100; // height is 100 pixels

rect_r = 255.0; // red is full intensity
rect_g = 0.0; // no blue
rect_b = 0.0; // no green

// Start the Windows message loop
while(msg.message != WM_QUIT)
{

if(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

}
else
{

GFX_Begin();
{

// Draw the rectangle

198 Tutorial 1 / Using 2DLIB

GFX_RectFill(rect_x, rect_y, rect_x+rect_w,
rect_y+rect_h, rect_r, rect_g, rect_b);

}
GFX_End();

}

// Check for keyboard input

// -> Movement
if(keys[VK_UP])
{

if(rect_y > 0)
rect_y--;

}
if(keys[VK_DOWN])
{

if(rect_y+rect_h < 480)
rect_y++;

}
if(keys[VK_RIGHT])
{

if(rect_x+rect_w < 640)
rect_x++;

}
if(keys[VK_LEFT])
{

if(rect_x > 0)
rect_x--;

}

// -> Colors
if(keys[VkKeyScan('r')])
{

rect_r = 255.0;
rect_g = 0.0;
rect_b = 0.0;

}
if(keys[VkKeyScan('g')])
{

rect_r = 0.0;
rect_g = 255.0;
rect_b = 0.0;

}
if(keys[VkKeyScan('b')])
{

rect_r = 0.0;
rect_g = 0.0;
rect_b = 255.0;

}
}
GFX_Shutdown();
return msg.wParam;

}

Tutorial 1 / Using 2DLIB 199

2DLIB Example 2 — Loading
and Rotating Graphics

In this example we load a single bitmap file, then display it twice on the
screen and make the two copies rotate in opposite directions.

The first thing we must do is create a skeleton project as described
earlier in this tutorial. Once we have this in place, we can begin by cre-
ating one variable that will hold the image and another to hold the
current angle in degrees.

GFX_IMAGE2D cdrom;
float rotation;

The preceding declarations are global. The first is used to store the
image in a variable called cdrom, and the second is used to store the
angle in degrees at which the image is to be rotated. To spin the second
image in the opposite direction, we simply subtract the rotation value
from 360 degrees.

Next, we need to load our graphic file into the application. In this
case, the file is an image of a cdrom and is called cdrom.bmp. There-
fore, to load it we would want to call the GFX_LoadBitmap()
function as follows:

GFX_LoadBitmap(&cdrom, "cdrom.bmp");

This would load the cdrom.bmp into the cdrom global variable. This is
done after we initialize the 2D library. Once this is done we can display
the image on the screen using the following technique:

GFX_Blit(&cdrom, 32, 100, 256, 256, rotation);
GFX_Blit(&cdrom, 352, 100, 256, 256, 360-rotation);

These two functions are placed between the GFX_Begin() and
GFX_End() functions as they display the image onto the screen. The
first image is displayed at (32, 100) and the second is displayed at (352,
100). Both images are 256 x 256 pixels. Additionally, the first is rotated
clockwise and the latter is rotated counterclockwise.

The only thing left to do now is adjust the rotation variable every
time through the loop. This is simply done as follows:

rotation++;
if(rotation>360)
{

rotation –= 360;
}

When the rotation value becomes greater than 360 degrees, 360 is sub-
tracted from the value.

200 Tutorial 1 / Using 2DLIB

That completes the second example. When you compile and execute
the following code listing, you should see two images of CD-ROMs dis-
played on the screen spinning in opposite directions.

Complete Code Listing for Example 2

#include <windows.h>
#include <gl/gl.h>
#include <gl/glu.h>
#include <gl/glaux.h>
#include <2dlib.h>

// APPLICATION SPECIFIC

GFX_IMAGE2D cdrom; // variable to hold 'cdrom' graphic
float rotation; // variable to hold current rotation value

// WINDOWS PROCEDURE
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{

switch (uMsg)
{

case WM_CLOSE:
{

PostQuitMessage(0);
return 0;

}

case WM_KEYDOWN:
{

keys[wParam] = TRUE;
return 0;

}

case WM_KEYUP:
{

keys[wParam] = FALSE;
return 0;

}

case WM_SIZE:
{

GFX_Resize(LOWORD(lParam),HIWORD(lParam));
return 0;

}
}

// Pass all unhandled messages to DefWindowProc
return DefWindowProc(hWnd,uMsg,wParam,lParam);

Tutorial 1 / Using 2DLIB 201

}

// WINDOWS MESSAGE LOOP AND APPLICATION ENTRY POINT
int WINAPI WinMain(HINSTANCE hThisInst, HINSTANCE hPrevInst, LPSTR lpszArgs,

int nWinMode)
{

MSG msg;

// Initialize 2DLIB
GFX_Init("2DLIB - Example 1", 640, 480, 16, 0, WndProc);

// Load in the image
GFX_LoadBitmap(&cdrom, "cdrom.bmp");

// Start the Windows message loop
while(msg.message != WM_QUIT)
{

if(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

}
else
{

GFX_Begin();
{

GFX_Blit(&cdrom, 32, 100, 256, 256, rotation);
GFX_Blit(&cdrom, 352, 100, 256, 256, 360-rotation);

}
GFX_End();

rotation++;
if(rotation>360)
{

rotation –= 360;
}

}

// Check for keyboard input
}
GFX_Shutdown();
return msg.wParam;

}

202 Tutorial 1 / Using 2DLIB

Summary

In this tutorial, you learned how to create a simple 2D graphics applica-
tion using our 2D OpenGL library. This knowledge is sufficient for you
to understand the network game programming tutorials that are to fol-
low, although we would recommend learning more about OpenGL and
Direct3D, as they are very useful pieces of knowledge. On a final note,
it is also possible to add OpenGL commands directly. The library cre-
ates an OpenGL window with a two-dimensional orthographic view;
therefore you could, for example, change it to a perspective view and
create a 3D application, but this is beyond the scope of these tutorials.
The network code, however, is not tied to any one graphics library, so
you can implement any style of game using the same network library
whether it is 2D or 3D.

Tutorial 1 / Using 2DLIB 203

This page intentionally left blank.

Tutorial 2

Creating Your
Network Library

Introduction

In this tutorial we learn how to create the most essential part of our
tutorial game: the network library. We learn how to send and receive
data, how to ping hosts, and so on. We make a library of all the network
code in order to gain access to it in every application we want. In the
case of our tutorial game, we use the library in the game itself (client
software) and in the server. Also, if we want to make any extra servers
with functionality different from the normal game server, we would
most likely want to use the same library for that too.

We create the library so that it can be used under both Windows and
Unix (Linux). The basic idea is that the game (client) is run on Win-
dows and the server on Unix. But because of our platform-independent
code, we do not have to worry about the network code if we want to
change platforms.

We are going to create our network library using only UDP protocol,
as it is more suitable for computer games than TCP. You could use both,
but to make things simpler, we only concentrate on UDP. You may won-
der if this is what other games on the market do. The anwer is yes; all
the games you play on the Internet use UDP protocol. Well, most of
them anyway.

205

The name for the library we are creating here is dreamSock. The
name comes from a game development group to which the authors of
this book belonged. The group is no longer active, but dreamSock lives
on!

Why Create a Network
Library of Our Own?

One big question arises when you start to think about creating your
own network library: Why? Why would anyone want to make one when
there are perfectly good network libraries out there already? For exam-
ple, why not use Microsoft’s DirectPlay?

DirectPlay is an excellent library, and because it is designed solely
for gaming, it is an excellent choice for a game programmer. But it has
one major drawback: You do not have Unix connectivity with it. Now
you may think that no one really needs that. Well, it is really up to you
if you want Unix connectivity, but because Unix is an absolutely stable
system, it is the best choice for the server platform. There are some
examples of bad experiences stemming from not using any Unix oper-
ating system as the server platform in recent gaming history, so why
repeat those mistakes?

If you create your own network library using sockets, you can have
full Unix connectivity if you want. Plus, you will have a library that fits
your needs exactly. And you can always improve upon it.

Planning the Structure

Before doing anything else we should take a moment to think about the
structure of the library. We need to know all the facts about the library
before we start to code it. If we started coding the library without any
planning beforehand, we would most likely need to modify the struc-
ture many times before it met our requirements.

So let’s look at some of the facts. Fact number one is that the library
must be platform independent. This leads to the conclusion that it is
best to use platform-independent functions as much as we can, and also
divide the code into separate files to store platform-dependent code.
We can easily add support for more platforms this way. We need one
main source file that wraps up all the code and selects the correct func-
tions to be run.

Fact number two is that in a network connection, we have a server,
the clients, and the connection between them (or in the case of UDP,
only the packets we send between them). So it is a good idea to make

206 Tutorial 2 / Creating Your Network Library

separate C++ classes — a class for the server, a class for the client,
and a class for the messages between them.

We also want an easy-to-use interface for the library so the C++
classes internally take care of everything for the end user. But it would
be nice to have access to the socket functions too, so we will make
global functions for them first. Because our game needs to have only
Windows and Unix support, we create three source files and their
header files: dreamSock.cpp, dreamSock.h, dreamSockGlobal.cpp,
dreamWinSock.cpp, and dreamLinuxSock.cpp. We also create
dreamSockLog.cpp and dreamSockLog.h for our logging system. Some
people want to put each class into a separate file, and that is fine, but
we will put all the classes into dreamSock.cpp and dreamSock.h.

A network library may vary in size, depending on the functionality
we want, so it is a good idea to make the code as modular as possible.
Therefore, we use the C++ class as the base of our library, with each
object being one connection on a client and one service on a server
(with multiple connections). Other factors do not affect the structure of
the library much.

Planning the Functionality

Knowing the basic functionality before starting to code is also a must.
Of course, we could just write functions for sending and receiving data
without anything extra, but what would that accomplish? Nothing. But
we are going to do that anyway. Yes, it sounds stupid, but read on. We
write some global functions before we write the actual library function-
ality, and then we use these global functions in the C++ class we are
going to write.

We want to create the library to make it as easy to use as possible.
We do this by moving all the complex network technology from the end
programmer to the background, so that the end programmer can
merely point and tell the library what to do. The end programmer
should not worry about binding address information to a socket; that is
a job for the network library. The end programmer should not have to
understand the complex technical functionality of the network code.
And most of all, the network library must take care of sending the data
to the correct location.

Identifying Hosts

Being able to tell one host from another is not really required when
sending because whenever we send data, we send it to all the clients at
once (or only to the server). We do send unique data to a host when it

Tutorial 2 / Creating Your Network Library 207

connects to the server, but we only reply to the address from which the
connection request came. A client, on the other hand, can only send to
a server.

The clients that join a server are stored in a client list. This is a
linked list, so when a client disconnects, the original order of the list is
lost. Clients are stored in the order in which they join the server. It is
possible to send to a certain client by browsing that list and comparing
the addresses to see which one is the one we want, but normally there
is no need for that.

But we do need to identify a host when we receive data from it. How
else would we know what client to process? When we receive data, we
also receive the address it came from, and we simply compare this
address to the ones we have stored.

Sending Data to Hosts

Sending data to hosts is not as straightforward as it may seem at first.
This is because we need to decide if we want to let the clients send
data between each other directly without having the server as a router
of any kind. To be able to send data directly between clients, all the cli-
ents need to know the address information of all the other clients. If
there are a lot of clients in the network, it would consume vast amounts
of memory and time (as the address information must be sent via the
network). Also, the server cannot process data that is sent between
two clients. This is why we decided not to allow clients to send data
between each other directly.

In fact, we will not provide functionality to send data between clients
indirectly either. That is the job for the end user if it is required.
Normally, a client sends its information to the server, and the server
then sends that information to every client (even to the one that origi-
nally sent it to the server).

We will create a message sequence system that allows us to see if a
packet is dropped. Each packet is given a sequence number, and the
remote host knows what packet number to expect next. If those num-
bers do not match, one more packet was lost somewhere. We will
continue processing the packets normally, but the number of dropped
packets is noted. It is up to the network application whether it cares
about dropped packets.

What about multithreading, then? Do we need to open a socket for
each client on the server? With UDP, the answer is no. All we need is
one socket on the server side that takes care of sending and receiving
data for every client. That is possible because we store the clients’
addresses in the client list, and we can then pick the address from there
when we want to send data or when we need to identify a host. Do not

208 Tutorial 2 / Creating Your Network Library

worry about the server missing some packets even though it uses only
one socket, as the operating system buffers all the incoming messages
for us.

So to summarize: A client sends data only to the server, and the
server sends data to all clients at once. Each host opens only one
socket.

Pinging — Calculating Network Latency

Pinging is a useful way to see how fast the network connection is
between two hosts. Pinging is very simple: Have you ever seen a sub-
marine movie where a sub pings another sub to see if it is there (or
how far away it is)? The sound is deflected from the other sub’s hull,
and those on the first sub will hear the ping sound come back. Pinging
in network programming is exactly the same. We send a ping message
to the host we want, and then we listen for the ping to come back. Then
we calculate the time difference between sending and receiving the
ping, and there it is, network latency between those two hosts.
Remember that this value is the time it takes for a client to send a mes-
sage and receive a response, so it takes roughly half of that time for one
message to reach its destination.

We create pinging directly in our network library. Only the server
calculates the values because we want to be able to tell all the clients’
pings to everyone.

Timing Out

Some clients may crash without being able to disconnect properly from
the server, so we need a way to drop those clients from the server. One
way to do that is to keep track of when the client sent us something. If
the client did not send us anything in a certain amount of time, we
assume it has crashed and should be dropped from the server. We
implement this in our network library with the timeout value set to 30
seconds.

Building the Library

Now we will learn how to build the library file. We will actually learn to
set up the compiler so that it builds a library file for us, which can then
be linked to other applications.

Tutorial 2 / Creating Your Network Library 209

Windows

Building and compiling the library on Windows is very easy with
Microsoft Visual C++ 6.0. Because we are building a library, there is
no need (and no way) to link any extra libraries with it. All the linking
of other libraries is done when we build the application that uses our
library. But there is a way to make our library link other libraries
automatically.

Because this network library requires the WinSock 2 library on Win-
dows, we need to link it with the application. We could link it normally
among the other libraries in Microsoft Visual C++ 6.0 settings, as
shown in the following figure.

But we can also add the following line in our network library’s header
file to make the WinSock 2 library be linked automatically whenever
our network library is linked.

#pragma comment (lib, "ws2_32.lib")

We must also define the constant WIN32, as shown in the following
piece of code, to make the compiler compile the correct version of the
source code.

#define Win32

Or we can add it to the preprocessor list as shown in the following
figure.

210 Tutorial 2 / Creating Your Network Library

Figure 1

This is our own constant, so we must also know where and how to use
it. It is used to define parts of code that belong to Windows only or Unix
only. It is used as follows:

#ifdef Win32
// place Windows code here
#else
// place other platform code here (in our case: Unix/Linux code)
#endif

Unix/Linux

Building the library on Unix is a little bit more complicated, as is pretty
much everything on Unix systems. We need to use the following
makefile and a command-line compiler. This should work on most Unix
systems, but depending on your setup, you may have to change some
things. Note also that C_ARGS is commented out, but you can
uncomment it to see more warnings during compilation.

#C_ARGS = –Wall
CC = gcc

all: dreamSock.o dreamSockLog.o dreamLinuxSock.o dreamSockGlobal.o
ar q libdreamSock.a dreamSock.o dreamSockLog.o dreamLinuxSock.o

dreamSockGlobal.o
cp libdreamSock.a ../server/
cp dreamSock.h ../server/
cp dreamSockLog.h ../server/

clean:
rm –f *.o
rm libdreamSock.a

Tutorial 2 / Creating Your Network Library 211

Figure 2

dreamSock.o: dreamSock.cpp
$(CC) $(C_ARGS) –c dreamSock.cpp

dreamSockLog.o: dreamSockLog.cpp
$(CC) $(C_ARGS) –c dreamSockLog.cpp

dreamLinuxSock.o: dreamLinuxSock.cpp
$(CC) $(C_ARGS) –c dreamLinuxSock.cpp

dreamSockGlobal.o: dreamSockGlobal.cpp
$(CC) $(C_ARGS) –c dreamSockGlobal.cpp

Now all we need to do is run make on the command line and the library
is built. The above makefile will copy the required header files and
library file to a directory called server. That is where you should put
your server code.

NOTE Make sure you have enough rights to make the library on the
Unix machine you use.

Creating Independent Code

In this section we discuss how we can make our code platform inde-
pendent. We use the same function calls, but the insides differ. To the
end programmer who will be using the library, it looks as if the code is
exactly the same, regardless of the platform we are using.

Creating Definitions for Data Types

To create the new definitions we must know which platform is used for
the build. This is very easy: You can either add a definition for the cur-
rent platform at the beginning of your code or use the preprocessor of
the compiler. Both do the same thing really. If you want to use
#define, just add this line when you are compiling under Windows:

#define Win32

You do not have to add a define for Unix builds because you can simply
comment out the definition of WIN32. This kind of system assumes
that we are going to use the code only on Windows and some other
(unspecified) operating system. In our case, the other operating system
is Unix (or Linux). We could provide definitions for all the operating
systems we are going to support, but it is easier this way when we use
only two known systems.

212 Tutorial 2 / Creating Your Network Library

Using the preprocessor is even easier. Just add the string “Win32” in
the Windows version makefile (or workspace settings) preprocessor’s
list of definitions. Now you do not have to make any modifications to
your code when you move from one platform to another. The makefile
you use defines the platform for the code.

But how do we check if the definition of WIN32 is there? Again, this
is very simple.

#ifdef Win32
typedef int socklen_t; // will be run if we are on Win32

#else
typedef int SOCKET; // will be run if we are not on Win32

#endif

This small piece of code checks the platform used during the build. The
compiler ignores the non-true statement, and it will not be added to the
executable. Hence, it does not slow down the run-time process.

Now we will create definitions for some data types, so we can use
one data type identifier on all platforms. These are the types to define:

� socklen_t = int

� SOCKET = int

� TRUE = 1

� FALSE = 0

Here is how we do that in our code:

// Define SOCKET data type for Unix (defined in WinSock for Win32)
// And socklen_t for Win32
#ifdef Win32

typedef int socklen_t;
#else

typedef int SOCKET;

#ifndef TRUE
#define TRUE 1
#endif
#ifndef FALSE
#define FALSE 0
#endif

#endif

Log System

It is a good idea to keep a log of what is happening so we can see
exactly what happened when. For example, if something does go wrong
we do not have to shut down the server and start investigating. We can
first check the log file to see if that helps.

Tutorial 2 / Creating Your Network Library 213

The log system goes into the dreamSockLog.cpp and dreamSock-
Log.h files. Let’s first take a look at the header file:

#ifndef __DREAMSOCKLOG_H__
#define __DREAMSOCKLOG_H__

#ifdef Win32

class dreamConsole
{

public:
dreamConsole(char *title);
~dreamConsole();
void println(char *string, int type, ...);

};

#define CONSOLE_NOTIFY 0
#define CONSOLE_ERROR 1
#define CONSOLE_FATAL 2

// Function prototypes
void StartLogConsole(void);
#endif

// Function prototypes
void StartLog(void);
void StopLog(void);
void LogString(char *string, ...);

#endif

As you see, the log system’s header file is rather simple. You should
notice that the dreamConsole class is defined only for Windows. This
console class is used to display run-time log information. Unix systems
do not need that because they are nothing but big consoles themselves.

StartLogConsole Function

The StartLogConsole function simply creates a dreamConsole
object.

#ifdef Win32
void StartLogConsole(void)
{

console = new dreamConsole("dreamSock application");
}
#endif

214 Tutorial 2 / Creating Your Network Library

dreamConsole Constructor

The constructor function for dreamConsole is listed here:

dreamConsole::dreamConsole(char *title)
{

AllocConsole();
SetConsoleTitle(title);

}

dreamConsole Destructor

The destructor function for dreamConsole is as follows:

dreamConsole::~dreamConsole()
{

FreeConsole();
}

The constructor and destructor functions allocate and deallocate the
Win32 console system.

println Function

The println function is used to print a line on the console screen.

void dreamConsole::println(char *string, int type, ...)
{

char buf[1024];
char buf2[1024];
va_list ap;
va_start(ap, string);
vsprintf(buf, string, ap);
va_end(ap);

sprintf(buf2, "-> %s\n", buf);

HANDLE console = GetStdHandle(STD_OUTPUT_HANDLE);

switch(type)
{
case 0:

SetConsoleTextAttribute(console, FOREGROUND_GREEN |
FOREGROUND_INTENSITY);

break;

case 1:
SetConsoleTextAttribute(console, FOREGROUND_RED |

FOREGROUND_INTENSITY);
break;

}

Tutorial 2 / Creating Your Network Library 215

WriteConsole(console, buf2, strlen(buf2), NULL, NULL);
}

Here we first get a handle to a standard console output and then set the
attributes for the text color and background. Finally the text is written
on the console screen.

HANDLE console = GetStdHandle(STD_OUTPUT_HANDLE);

switch(type)
{
case 0:

SetConsoleTextAttribute(console, FOREGROUND_GREEN |
FOREGROUND_INTENSITY);

break;

case 1:
SetConsoleTextAttribute(console, FOREGROUND_RED | FOREGROUND_INTENSITY);
break;

}

WriteConsole(console, buf2, strlen(buf2), NULL, NULL);

StartLog Function

StartLog is used to start the log system.

void StartLog(void)
{

time_t current = time(NULL);

if((LogFile = fopen("dreamSock.log", "w")) != NULL)
{

fprintf(LogFile, "Log file started %s", ctime(¤t));

fclose(LogFile);
}

if((LogFile = fopen("dreamSock.log", "a")) != NULL)
{
}

}

The following piece of code is used to retrieve the current time. This
information is written every time something is logged so we know
when it happened.

time_t current = time(NULL);

We open the file for writing and write the current time at the beginning
of the file. Then we close the log file and open it for adding so we can
start adding text to it. We leave the file handle open.

216 Tutorial 2 / Creating Your Network Library

if((LogFile = fopen("dreamSock.log", "w")) != NULL)
{

fprintf(LogFile, "Log file started %s", ctime(¤t));

fclose(LogFile);
}

if((LogFile = fopen("dreamSock.log", "a")) != NULL)
{
}

LogString Function

LogString is used to add a string to the log file.

void LogString(char *string, ...)
{

char buf[1024];
va_list ap;
va_start(ap, string);
vsprintf(buf, string, ap);
va_end(ap);

// Get current time and date
time_t current = time(NULL);

char timedate[64];
sprintf(timedate, ctime(¤t));

// Remove linefeed from time/date string
int i = 0;

while(timedate[i] != '\n')
{

i++;
}

timedate[i] = '\0';

// Output log string
#ifdef Win32
fprintf(LogFile, "%s: %s\n", timedate, buf);

if(console)
console->println(buf, 0);

#else
// Linux outputs to screen and to the open file when running as daemon
printf("%s: %s\n", timedate, buf);
#endif

}

Tutorial 2 / Creating Your Network Library 217

First we will format the text so that we can add any variable values to
it. The final string will be stored in string buf.

char buf[1024];
va_list ap;
va_start(ap, string);
vsprintf(buf, string, ap);
va_end(ap);

Again we retrieve the current time to add a time stamp with each log
string. We remove the almost annoying linefeed character from the end
of the timedate string so we can write stuff on the same line as the
time stamp.

time_t current = time(NULL);

char timedate[64];
sprintf(timedate, ctime(¤t));

// Remove linefeed from time/date string
int i = 0;

while(timedate[i] != '\n')
{

i++;
}

timedate[i] = '\0';

We write the time stamp and the string and follow it by a linefeed, so
the user does not have to add the linefeed to the string every time.

// Output log string
#ifdef Win32
fprintf(LogFile, "%s: %s\n", timedate, buf);

if(console)
console->println(buf, 0);

#else
// Linux outputs to screen and to the open file when running as daemon
printf("%s: %s\n", timedate, buf);
#endif

StopLog Function

After we are done logging, we need to stop the log system. That is
done with the following StopLog function:

void StopLog(void)
{

fclose(LogFile);

#ifdef Win32
if(console != NULL)

218 Tutorial 2 / Creating Your Network Library

delete console;
#endif
}

The log file handle is closed. On Windows systems, the console object
is removed if it exists.

Getting Started

Let’s get started. It is a good idea to start writing the code so that we
can test it as soon as possible. It is very frustrating to write tons of
code and not know if it works at all. It is also much easier to debug the
code if we notice when a bug appears (of course, we are aiming not to
meet any critters). So we will start from scratch and move on to the
final library step by step.

Setting Up Source and Header Files

Before we actually start coding the library, we need to set up some
things in the source files and header files. In the main source file,
dreamSock.cpp, we need to have the following build-time definition
check in the Windows version to make sure that WinSock 2 API is used
instead of an older version:

#ifndef _WINSOCKAPI_
#define _WINSOCKAPI_
#endif

If we do not define _WINSOCKAPI_ before including windows.h, an old
version of the WinSock header file will be included and the build will
fail. So the preceding piece of code is required for all WinSock 2 applica-
tions that include the windows.h header.

The beginning of dreamSock.cpp looks like this:

#ifdef Win32
// Windows-specific headers

#ifndef _WINSOCKAPI_
#define _WINSOCKAPI_
#endif
#include <windows.h>
#include <winsock2.h>

#else
// Unix-specific headers

#include <memory.h>
#include <errno.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <netinet/in.h>

Tutorial 2 / Creating Your Network Library 219

#include <arpa/inet.h>
#endif

// Common headers
#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>
#include <ctype.h>
#include <time.h>
#include "dreamSock.h"
#include "dreamSockLog.h"

As we can see in the preceding code, we have separate header files for
Windows and Unix, along with some common header files that both
operating systems require. As we learned in the section titled “Cre-
ating Independent Code,” we use build-time definition checks to see
what piece of code is to be linked and what is not, depending on the
platform we are on.

dreamSock.h File

#ifndef __DREAMSOCK_H
#define __DREAMSOCK_H

#include "dreamSockLog.h"

#ifdef Win32
#pragma comment (lib,"ws2_32.lib")
#pragma message ("Auto linking WinSock2 library")

#include <winsock2.h>
#else

#include <string.h>
#include <netinet/in.h>

#endif

#include <stdio.h>
#include <stddef.h>

// Define SOCKET data type for Unix (defined in WinSock for Win32)
// And socklen_t for Win32
#ifdef Win32

typedef int socklen_t;
#else

typedef int SOCKET;

#ifndef TRUE
#define TRUE 1
#endif
#ifndef FALSE
#define FALSE 0
#endif

220 Tutorial 2 / Creating Your Network Library

#endif

// Host types
#define DREAMSERVER –1
#define DREAMCLIENT 0

// Connection protocols
#define DREAMSOCK_TCP 0
#define DREAMSOCK_UDP 1

// Connection states
#define DREAMSOCK_CONNECTING 0
#define DREAMSOCK_CONNECTED 1
#define DREAMSOCK_DISCONNECTING 2
#define DREAMSOCK_DISCONNECTED 4

// Error codes
#define DREAMSOCK_SERVER_ERROR 1
#define DREAMSOCK_CLIENT_ERROR 2

#ifdef Win32
#define DREAMSOCK_INVALID_SOCKET INVALID_SOCKET

#else
#define DREAMSOCK_INVALID_SOCKET –1

#endif

// System messages
// Note (for all messages — system and user):
// positive = sequenced message
// negative = unsequenced message
#define DREAMSOCK_MES_CONNECT –101
#define DREAMSOCK_MES_DISCONNECT –102
#define DREAMSOCK_MES_ADDCLIENT –103
#define DREAMSOCK_MES_REMOVECLIENT –104
#define DREAMSOCK_MES_PING –105

// Introduce classes
class dreamMessage;
class dreamClient;
class dreamServer;
class dreamSock;

class dreamMessage
{
private:

bool overFlow;
int maxSize;
int size;
int readCount;

char *GetNewPoint(int length);

public:
void Init(char *d, int length);

Tutorial 2 / Creating Your Network Library 221

void Clear(void);
void Write(void *d, int length);
void AddSequences(dreamClient *client);

void WriteByte(char c);
void WriteShort(short c);
void WriteLong(long c);
void WriteFloat(float c);
void WriteString(char *s);
void BeginReading(void);
void BeginReading(int s);
char *Read(int s);
char ReadByte(void);
short ReadShort(void);
long ReadLong(void);
float ReadFloat(void);
char *ReadString(void);

bool GetOverFlow(void) {return overFlow;}
int GetSize(void) {return size;}
void SetSize(int s) {size = s;}

char *data;
char outgoingData[1400];

};

class dreamClient
{
private:

void DumpBuffer(void);
void ParsePacket(dreamMessage *mes);

int connectionState; // Connecting, connected,
// disconnecting, disconnected

unsigned short outgoingSequence; // Outgoing packet sequence
unsigned short incomingSequence; // Incoming packet sequence
unsigned short incomingAcknowledged; // Last packet acknowledged

// by other end
unsigned short droppedPackets; // Dropped packets

int serverPort; // Port
char serverIP[32]; // IP address
int index; // Client index (starts

// from 1, running number)
char name[32]; // Client name

SOCKET socket; // Socket
struct sockaddr myaddress; // Socket address

int pingSent; // When did we send ping?
int ping; // Network latency

222 Tutorial 2 / Creating Your Network Library

int lastMessageTime;

bool init;

public:
dreamClient();
~dreamClient();

int Initialize(char *localIP, char *remoteIP, int port);
void Uninitialize(void);
void Reset(void);
void SendConnect(char *name);
void SendDisconnect(void);
void SendPing(void);

void SetConnectionState(int con) {connectionState = con;}
int GetConnectionState(void) {return connectionState;}

int GetPacket(char *data, struct sockaddr *from);
void SendPacket(void);
void SendPacket(dreamMessage *message);

unsigned short GetOutgoingSequence(void) {return outgoingSequence;}
void SetOutgoingSequence(unsigned short seq)

{outgoingSequence = seq;}
void IncreaseOutgoingSequence(void) {outgoingSequence++;}
unsigned short GetIncomingSequence(void) {return incomingSequence;}
void SetIncomingSequence(unsigned short seq)

{incomingSequence = seq;}
unsigned short GetIncomingAcknowledged(void) {return

incomingAcknowledged;}
void SetIncomingAcknowledged(unsigned short seq)

{incomingAcknowledged = seq;}
unsigned short GetDroppedPackets(void) {return droppedPackets;}
void SetDroppedPackets(unsigned short drop)

{droppedPackets = drop;}

bool GetInit(void) {return init;}

int GetIndex(void) {return index;}
void SetIndex(int ind) {index = ind;}

char *GetName(void) {return name;}
void SetName(char *n) {strcpy(name, n);}

SOCKET GetSocket(void) {return socket;}
void SetSocket(SOCKET sock) {socket = sock;}

struct sockaddr *GetSocketAddress(void) {return &myaddress;}
void SetSocketAddress(struct sockaddr *address)

{memcpy(&myaddress, address, sizeof(struct
sockaddr));}

int GetPingSent(void) {return pingSent;}

Tutorial 2 / Creating Your Network Library 223

void SetPing(int p) {ping = p;}

int GetLastMessageTime(void) {return lastMessageTime;}
void SetLastMessageTime(int t) {lastMessageTime = t;}

dreamMessage message;
dreamClient *next;

};

class dreamServer
{
private:

void SendAddClient(dreamClient *newClient);
void SendRemoveClient(dreamClient *client);
void AddClient(struct sockaddr *address, char *name);
void RemoveClient(dreamClient *client);
void ParsePacket(dreamMessage *mes, struct sockaddr

*address);
int CheckForTimeout(char *data, struct sockaddr *from);

dreamClient *clientList;

int port; // Port
SOCKET socket; // Socket
int runningIndex; // Running index numbers for new

// clients

bool init;

public:
dreamServer();
~dreamServer();

int Initialize(char *localIP, int serverPort);
void Uninitialize(void);
void SendPing(void);
int GetPacket(char *data, struct sockaddr *from);
void SendPackets(void);

bool GetInit(void) {return init;}
dreamClient *GetClientList(void) {return clientList;}

int GetPort(void) {return port;}
};

/***************************************

dreamSock global functions

***************************************/

// Function prototypes
int dreamSock_Initialize(void);
int dreamSock_InitializeWinSock(void);

224 Tutorial 2 / Creating Your Network Library

void dreamSock_Shutdown(void);

SOCKET dreamSock_Socket(int protocol);
int dreamSock_SetNonBlocking(SOCKET sock, u_long setMode);
int dreamSock_SetBroadcasting(SOCKET sock, int mode);
int dreamSock_StringToSockaddr(char *addressString, struct sockaddr *sadr);
SOCKET dreamSock_OpenUDPSocket(char netInterface[32], int port);
void dreamSock_CloseSocket(SOCKET sock);

int dreamSock_GetPacket(SOCKET sock, char *data, struct sockaddr *from);
void dreamSock_SendPacket(SOCKET sock, int length, char *data, struct

sockaddr addr);
void dreamSock_Broadcast(SOCKET sock, int length, char *data, int port);

#ifndef Win32
int dreamSock_Linux_GetCurrentSystemTime(void);
#else
int dreamSock_Win_GetCurrentSystemTime(void);
#endif

int dreamSock_GetCurrentSystemTime(void);

#endif

dreamMessage Class

Now let’s start creating our library by first creating the header files.
Here we list the dreamMessage class, which is typically used to build
outgoing messages and parse incoming messages.

class dreamMessage
{
private:

bool overFlow;
int maxSize;
int size;
int readCount;

char *GetNewPoint(int length);

public:
void Init(char *d, int length);
void Clear(void);
void Write(void *d, int length);
void AddSequences(dreamClient *client);

void WriteByte(char c);
void WriteShort(short c);
void WriteLong(long c);
void WriteFloat(float c);
void WriteString(char *s);
void BeginReading(void);
void BeginReading(int s);
char *Read(int s);

Tutorial 2 / Creating Your Network Library 225

char ReadByte(void);
short ReadShort(void);
long ReadLong(void);
float ReadFloat(void);
char *ReadString(void);

bool GetOverFlow(void) {return overFlow;}
int GetSize(void) {return size;}
void SetSize(int s) {size = s;}

char *data;
char outgoingData[1400];

};

We take a closer look at the methods and variables later in this tutorial,
but as you can probably see, this class is rather simple. It contains
many write and read methods, as well as size control methods.

dreamClient Class

Next comes the dreamClient class, which is a bit more complicated
than dreamMessage. Do not worry too much about that now, every-
thing will be explained in detail later.

class dreamClient
{
private:

void DumpBuffer(void);
void ParsePacket(dreamMessage *mes);

int connectionState; // Connecting, connected,
// disconnecting, disconnected

unsigned short outgoingSequence; // Outgoing packet sequence
unsigned short incomingSequence; // Incoming packet sequence
unsigned short incomingAcknowledged; // Last packet acknowledged

// by other end
unsigned short droppedPackets; // Dropped packets

int serverPort; // Port
char serverIP[32]; // IP address
int index; // Client index (starts from

// 1, running number)
char name[32]; // Client name

SOCKET socket; // Socket
struct sockaddr myaddress; // Socket address

int pingSent; // When did we send ping?
int ping; // Network latency

int lastMessageTime;

226 Tutorial 2 / Creating Your Network Library

bool init;

public:
dreamClient();
~dreamClient();

int Initialize(char *localIP, char *remoteIP, int port);
void Uninitialize(void);
void Reset(void);
void SendConnect(char *name);
void SendDisconnect(void);
void SendPing(void);

void SetConnectionState(int con) {connectionState = con;}
int GetConnectionState(void) {return connectionState;}

int GetPacket(char *data, struct sockaddr *from);
void SendPacket(void);
void SendPacket(dreamMessage *message);

unsigned short GetOutgoingSequence(void) {return outgoingSequence;}
void SetOutgoingSequence(unsigned short seq)

{outgoingSequence = seq;}
void IncreaseOutgoingSequence(void) {outgoingSequence++;}
unsigned short GetIncomingSequence(void) {return incomingSequence;}
void SetIncomingSequence(unsigned short seq)

{incomingSequence = seq;}
unsigned short GetIncomingAcknowledged(void) {return

incomingAcknowledged;}
void SetIncomingAcknowledged(unsigned short seq)

{incomingAcknowledged = seq;}
unsigned short GetDroppedPackets(void) {return droppedPackets;}
void SetDroppedPackets(unsigned short drop)

{droppedPackets = drop;}

bool GetInit(void) {return init;}

int GetIndex(void) {return index;}
void SetIndex(int ind) {index = ind;}

char *GetName(void) {return name;}
void SetName(char *n) {strcpy(name, n);}

SOCKET GetSocket(void) {return socket;}
void SetSocket(SOCKET sock) {socket = sock;}

struct sockaddr *GetSocketAddress(void) {return &myaddress;}
void SetSocketAddress(struct sockaddr *address)

{memcpy(&myaddress, address, sizeof(struct
sockaddr));}

int GetPingSent(void) {return pingSent;}
void SetPing(int p) {ping = p;}

Tutorial 2 / Creating Your Network Library 227

int GetLastMessageTime(void) {return lastMessageTime;}
void SetLastMessageTime(int t) {lastMessageTime = t;}

dreamMessage message;
dreamClient *next;

};

This class is used on both the server and client applications. On the
server side, this class works as a linked list to store all the clients that
have connected to that server. When the server wants to send data to a
client, it uses an object in this list to do so. On the client side, this class
is used to achieve and maintain the connection with the server.

dreamServer Class

Last but not least is the server class — dreamServer. This is actually
simpler than you might think, because all the magic happens in the
dreamClient class.

class dreamServer
{
private:

void SendAddClient(dreamClient *newClient);
void SendRemoveClient(dreamClient *client);
void AddClient(struct sockaddr *address, char *name);
void RemoveClient(dreamClient *client);
void ParsePacket(dreamMessage *mes, struct sockaddr

*address);
int CheckForTimeout(char *data, struct sockaddr *from);

dreamClient *clientList;

int port; // Port
SOCKET socket; // Socket
int runningIndex; // Running index numbers for new

// clients

bool init;

public:
dreamServer();
~dreamServer();

int Initialize(char *localIP, int serverPort);
void Uninitialize(void);
void SendPing(void);
int GetPacket(char *data, struct sockaddr *from);
void SendPackets(void);

bool GetInit(void) {return init;}
dreamClient *GetClientList(void) {return clientList;}

228 Tutorial 2 / Creating Your Network Library

int GetPort(void) {return port;}
};

This class is used only on the server side. Its function is to listen for
incoming clients and communicate with them as long as they are con-
nected. This class contains a linked list of all connected clients, and that
is where this class handles network communication.

Global Setup Functions

There are some global setup functions that are not in any class but are
very important for the library. These functions are:

� int dreamSock_Initialize(void);

� int dreamSock_InitializeWinSock(void);

� void dreamSock_Shutdown(void);

We have one global variable in our library that is not in any class. This
is a boolean variable (bool dreamSock_init) to store information
about dreamSock’s current state — whether it has been initialized or
not. This is important to know because many functions may call
dreamSock_Initialize or dreamSock_Shutdown in our appli-
cation. With the dreamSock_init variable, we can avoid running
initialization multiple times.

dreamSock_Initialize

This function is used to to initialize the library, and it is a platform-
independent function. This means that whatever the platform is, this
function must be run before any other dreamSock function can be used.
As we can see in the following code listing, this function currently has
no use on Unix (other than starting the log system). But this function
must exist to keep the source code platform independent. Also, we can
add Unix code later if we need to. On Windows, this runs a specific
function to initialize the WinSock API. The following code listing is the
first version of the dreamSock_Initialize function. We will
update this function later on.

int dreamSock_Initialize(void)
{

if(dreamSock_init == true)
return 0;

dreamSock_init = true;

StartLog();

#ifdef Win32
return dreamSock_InitializeWinSock();

Tutorial 2 / Creating Your Network Library 229

#else
return 0;

#endif
}

dreamSock_InitializeWinSock

This function, in contrast to the previous function, is used to initialize
only WinSock API. The programmer using our library does not have to
worry about this function, as dreamSock_Initialize will automat-
ically run this if we are on Windows. More accurately speaking, the
compiler will compile the source code so that this function will be run.
We introduced and examined this function in detail in Chapter 5.

int dreamSock_InitializeWinSock(void)
{

WORD versionRequested;
WSADATA wsaData;
DWORD bufferSize = 0;

LPWSAPROTOCOL_INFO SelectedProtocol;
int NumProtocols;

// Start WinSock2. If it fails, we do not need to call WSACleanup()
versionRequested = MAKEWORD(2, 0);
int error = WSAStartup(versionRequested, &wsaData);

if(error)
{

LogString("FATAL ERROR: WSAStartup failed (error = %d)", error);
return 1;

}
else
{

LogString("WSAStartup OK");

// Confirm that the WinSock2 DLL supports the exact version
// we want. If not, call WSACleanup().
if(LOBYTE(wsaData.wVersion) != 2 || HIBYTE(wsaData.wVersion)

!= 0)
{

LogString("FATAL ERROR: WinSock2 DLL does not support the
correct version (%d.%d)",

LOBYTE(wsaData.wVersion), HIBYTE(wsaData.wVersion));

WSACleanup();
return 1;

}
}

// Call WSAEnumProtocols to figure out how big of a buffer we need
NumProtocols = WSAEnumProtocols(NULL, NULL, &bufferSize);

230 Tutorial 2 / Creating Your Network Library

if((NumProtocols != SOCKET_ERROR) && (WSAGetLastError() != WSAENOBUFS))
{

WSACleanup();
return 1;

}

// Allocate a buffer and call WSAEnumProtocols to get an array of
// WSAPROTOCOL_INFO structs
SelectedProtocol = (LPWSAPROTOCOL_INFO) malloc(bufferSize);

if(SelectedProtocol == NULL)
{

WSACleanup();
return 1;

}

// Allocate memory for protocol list and define the protocols to
// look for
int *protos = (int *) calloc(2, sizeof(int));

protos[0] = IPPROTO_TCP;
protos[1] = IPPROTO_UDP;

NumProtocols = WSAEnumProtocols(protos, SelectedProtocol, &bufferSize);

free(protos);
protos = NULL;

free(SelectedProtocol);
SelectedProtocol = NULL;

if(NumProtocols == SOCKET_ERROR)
{

LogString("FATAL ERROR: Didn't find any required protocols");
WSACleanup();
return 1;

}

return 0;
}

dreamSock_Shutdown

This function, naturally, is used to shut down our network library. Like
dreamSock_Initialize, this function also currently has no real
use on Unix. But again, it must exist and must be run on both operating
systems’ code to achieve full platform independency. On Windows this
function will shut down the WinSock API. It must be run to shut down
the API; otherwise, we may be interfering the WinSock DLL registra-
tion process. The following code listing shows the first version of the
dreamSock_Shutdown function (we will update this function later).

Tutorial 2 / Creating Your Network Library 231

void dreamSock_Shutdown(void)
{

if(dreamSock_init == false)
return;

LogString("Shutting down dreamSock");

dreamSock_init = false;

StopLog();

#ifdef Win32
WSACleanup();

#endif
}

Global Socket Functions

Before we go into detail about all the methods and variables in the
classes, we should take a look at the global socket functions that are
used throughout the classes. The purpose of these functions is to wrap
some common socket functions into more compact ones, so it is easier
to start programming the actual network application.

Here are the functions:

SOCKET dreamSock_Socket(int protocol)
{

int type;
int proto;
SOCKET sock;

// Check which protocol to use
if(protocol == DREAMSOCK_TCP)
{

type = SOCK_STREAM;
proto = IPPROTO_TCP;

}
else
{

type = SOCK_DGRAM;
proto = IPPROTO_UDP;

}

// Create the socket
if((sock = socket(AF_INET, type, proto)) == –1)
{

LogString("dreamSock_Socket - socket() failed");

#ifdef Win32
errno = WSAGetLastError();
LogString("Error: socket() code %d : %s", errno,

strerror(errno));

232 Tutorial 2 / Creating Your Network Library

#else
LogString("Error: socket() : %s", strerror(errno));

#endif

return DREAMSOCK_INVALID_SOCKET;
}

return sock;
}

int dreamSock_SetNonBlocking(SOCKET sock, u_long setMode)
{

u_long set = setMode;

// Set the socket option
#ifdef Win32

return ioctlsocket(sock, FIONBIO, &set);
#else

return ioctl(sock, FIONBIO, &set);
#endif
}

int dreamSock_SetBroadcasting(SOCKET sock, int mode)
{

// make it broadcast capable
if(setsockopt(sock, SOL_SOCKET, SO_BROADCAST, (char *) &mode,

sizeof(int)) == –1)
{

LogString("DreamSock_SetBroadcasting failed");

#ifdef Win32
int err = WSAGetLastError();
LogString("Error code %d: setsockopt() : %s", err,

strerror(err));
#else

LogString("Error code %d: setsockopt() : %s", errno,
strerror(errno));

#endif

return DREAMSOCK_INVALID_SOCKET;
}

return 0;
}

int dreamSock_StringToSockaddr(char *addressString, struct sockaddr *sadr)
{

char copy[128];

memset(sadr, 0, sizeof(struct sockaddr));

Tutorial 2 / Creating Your Network Library 233

struct sockaddr_in *addressPtr = (struct sockaddr_in *) sadr;

addressPtr->sin_family = AF_INET;
addressPtr->sin_port = htons(0);

strcpy(copy, addressString);

// If the address string begins with a number, assume an IP address
if(copy[0] >= '0' && copy[0] <= '9')
{

*(int *) &addressPtr->sin_addr = inet_addr(copy);
return 0;

}
else return 1;

}

SOCKET dreamSock_OpenUDPSocket(char *netInterface, int port)
{

SOCKET sock;

struct sockaddr_in address;

sock = dreamSock_Socket(DREAMSOCK_UDP);

if(sock == DREAMSOCK_INVALID_SOCKET)
return sock;

dreamSock_SetNonBlocking(sock, 1);
dreamSock_SetBroadcasting(sock, 1);

// If no address string provided, use any interface available
if(!netInterface || !netInterface[0] || !strcmp(netInterface,

"localhost"))
{

LogString("No net interface given, using any interface
available");

address.sin_addr.s_addr = htonl(INADDR_ANY);
}
else
{

LogString("Using net interface = '%s'", netInterface);
dreamSock_StringToSockaddr(netInterface, (struct sockaddr *)

&address);
}

// If no port number provided, use any port number available
if(port == 0)
{

LogString("No port defined, picking one for you");
address.sin_port = 0;

}
else
{

234 Tutorial 2 / Creating Your Network Library

address.sin_port = htons((short) port);
}

address.sin_family = AF_INET;

// Bind the address to the socket
if(bind(sock, (struct sockaddr *) &address, sizeof(address)) == –1)
{

#ifdef Win32
errno = WSAGetLastError();
LogString("Error code %d: bind() : %s", errno, strerror(errno));

#else
LogString("Error code %d: bind() : %s", errno, strerror(errno));

#endif

return DREAMSOCK_INVALID_SOCKET;
}

// Get the port number (if we did not define one,
// we get the assigned port number here)
socklen_t len = sizeof(address);
getsockname(sock, (struct sockaddr *) &address, &len);

LogString("Opening UDP port = %d", ntohs(address.sin_port));

return sock;
}

void dreamSock_CloseSocket(SOCKET sock)
{
#ifdef Win32

closesocket(sock);
#else

close(sock);
#endif
}

int dreamSock_GetPacket(SOCKET sock, char *data, struct sockaddr *from)
{

int ret;
struct sockaddr tempFrom;
socklen_t fromlen;

fromlen = sizeof(tempFrom);

ret = recvfrom(sock, data, 1400, 0, (struct sockaddr *) &tempFrom,
&fromlen);

// Copy the address to the from pointer
if(from != NULL)

*(struct sockaddr *) from = tempFrom;

Tutorial 2 / Creating Your Network Library 235

if(ret == –1)
{

#ifdef Win32
errno = WSAGetLastError();

// Silently handle wouldblock
if(errno == WSAEWOULDBLOCK)

return ret;

if(errno == WSAEMSGSIZE)
{

// ERROR: Oversize packet

return ret;
}

LogString("Error code %d: recvfrom() : %s", errno,
strerror(errno));

#else
// Silently handle wouldblock
if(errno == EWOULDBLOCK || errno == ECONNREFUSED)

return ret;

LogString("Error code %d: recvfrom() : %s", errno,
strerror(errno));

#endif

return ret;
}

return ret;
}

void dreamSock_SendPacket(SOCKET sock, int length, char *data, struct
sockaddr addr)

{
int ret;

ret = sendto(sock, data, length, 0, &addr, sizeof(addr));

if(ret == –1)
{

#ifdef Win32
errno = WSAGetLastError();

// Silently handle wouldblock
if(errno == WSAEWOULDBLOCK)

return;

LogString("Error code %d: sendto() : %s", errno,
strerror(errno));

#else
// Silently handle wouldblock

236 Tutorial 2 / Creating Your Network Library

if(errno == EWOULDBLOCK)
return;

LogString("Error code %d: sendto() : %s", errno,
strerror(errno));

#endif
}

}

void dreamSock_Broadcast(SOCKET sock, int length, char *data, int port)
{

struct sockaddr_in servaddr;
socklen_t len;

// Use broadcast address
u_long inetAddr = inet_addr("255.255.255.255");

// Fill address information structure
memset(&servaddr, 0, sizeof(struct sockaddr_in));
servaddr.sin_family = AF_INET;
servaddr.sin_port = htons(port);
servaddr.sin_addr.s_addr = inetAddr;

len = sizeof(servaddr);

// Broadcast!
int ret = sendto(sock, data, length, 0, (struct sockaddr *) &servaddr,

len);

if(ret == –1)
{

#ifdef Win32
errno = WSAGetLastError();

// Silently handle wouldblock
if(errno == WSAEWOULDBLOCK)

return;

LogString("Error code %d: sendto() : %s", errno,
strerror(errno));

#else
// Silently handle wouldblock
if(errno == EWOULDBLOCK)

return;

LogString("Error code %d: sendto() : %s", errno,
strerror(errno));

#endif
}

}

int dreamSock_GetCurrentSystemTime(void)

Tutorial 2 / Creating Your Network Library 237

{
#ifndef Win32

return dreamSock_Linux_GetCurrentSystemTime();
#else

return dreamSock_Win_GetCurrentSystemTime();
#endif
}

dreamSock_Socket Function

This function creates a UDP or TCP socket, based on the given
parameter.

SOCKET dreamSock_Socket(int protocol)
{

int type;
int proto;
SOCKET sock;

// Check which protocol to use
if(protocol == DREAMSOCK_TCP)
{

type = SOCK_STREAM;
proto = IPPROTO_TCP;

}
else
{

type = SOCK_DGRAM;
proto = IPPROTO_UDP;

}

// Create the socket
if((sock = socket(AF_INET, type, proto)) == –1)
{

LogString("dreamSock_Socket - socket() failed");

#ifdef Win32
errno = WSAGetLastError();
LogString("Error: socket() code %d : %s", errno,

strerror(errno));
#else

LogString("Error: socket() : %s", strerror(errno));
#endif

return DREAMSOCK_INVALID_SOCKET;
}

return sock;
}

This function takes one parameter (int protocol) and uses it to
define what kind of socket to create. The actual library functionality
does not include TCP networking, so DREAMSOCK_TCP is there for
later use only. Of course, you can still create a TCP socket with this

238 Tutorial 2 / Creating Your Network Library

function, and then use that socket with basic socket functions. So all
this function really does is run the socket function and do some error
checking for it.

dreamSock_SetNonBlocking Function

This function sets a socket blocking or non-blocking, based on the
given parameters. Most of the time it is used to set a socket
non-blocking, hence the name.

int dreamSock_SetNonBlocking(SOCKET sock, u_long setMode)
{

u_long set = setMode;

// Set the socket option
#ifdef Win32

return ioctlsocket(sock, FIONBIO, &set);
#else

return ioctl(sock, FIONBIO, &set);
#endif
}

The function takes two parameters (SOCKET sock and u_long
setMode). The first one defines the socket to modify and the latter
sets the mode. If setMode is 1, the socket is set non-blocking.

dreamSock_SetBroadcasting Function

This is used to set a socket to broadcast over a local area network.

int dreamSock_SetBroadcasting(SOCKET sock, int mode)
{

// make it broadcast capable
if(setsockopt(sock, SOL_SOCKET, SO_BROADCAST, (char *) &mode,

sizeof(int)) == –1)
{

LogString("DreamSock_SetBroadcasting failed");

#ifdef Win32
int err = WSAGetLastError();
LogString("Error code %d: setsockopt() : %s", err,

strerror(err));
#else

LogString("Error code %d: setsockopt() : %s", errno,
strerror(errno));

#endif

return DREAMSOCK_INVALID_SOCKET;
}

return 0;
}

Tutorial 2 / Creating Your Network Library 239

Like dreamSock_SetNonBlocking, this function also has two
parameters (SOCKET sock and int mode) that define the socket to
modify and the mode to set. If mode is 1, the socket is set to broadcast.

Note A socket does not broadcast automatically even if it is set to
broadcast. To broadcast over a local area network, you must use
the broadcast address 255.255.255.255.

dreamSock_StringToSockaddr Function

This function converts the address string (for example, 192.168.0.1) to
socket address format.

int dreamSock_StringToSockaddr(char *addressString, struct sockaddr *sadr)
{

char copy[128];

memset(sadr, 0, sizeof(struct sockaddr));

struct sockaddr_in *addressPtr = (struct sockaddr_in *) sadr;

addressPtr->sin_family = AF_INET;
addressPtr->sin_port = htons(0);

strcpy(copy, addressString);

// If the address string begins with a number, assume an IP address
if(copy[0] >= '0' && copy[0] <= '9')
{

*(int *) &addressPtr->sin_addr = inet_addr(copy);
return 0;

}
else return 1;

}

This function takes two parameters (char *addressString and
struct sockaddr *sadr). The first one is used to give the func-
tion the IP address string, which we want to convert to a socket
address. The latter one is the socket address itself.

if(copy[0] >= '0' && copy[0] <= '9')
{

*(int *) &addressPtr->sin_addr = inet_addr(copy);
return 0;

}
else return 1;

The function checks whether the given address string actually is an IP
string by checking if the first letter is a number. Otherwise, the func-
tion fails and returns 1 to indicate this.

240 Tutorial 2 / Creating Your Network Library

dreamSock_OpenUDPSocket Function

Here is a function that does the magic to open a UDP socket and even
binds a port to it while doing so.

SOCKET dreamSock_OpenUDPSocket(char *netInterface, int port)
{

SOCKET sock;

struct sockaddr_in address;

sock = dreamSock_Socket(DREAMSOCK_UDP);

if(sock == DREAMSOCK_INVALID_SOCKET)
return sock;

dreamSock_SetNonBlocking(sock, 1);
dreamSock_SetBroadcasting(sock, 1);

// If no address string provided, use any interface available
if(!netInterface || !netInterface[0] || !strcmp(netInterface,

"localhost"))
{

LogString("No net interface given, using any interface
available");

address.sin_addr.s_addr = htonl(INADDR_ANY);
}
else
{

LogString("Using net interface = '%s'", netInterface);
dreamSock_StringToSockaddr(netInterface, (struct sockaddr *)

&address);
}

// If no port number provided, use any port number available
if(port == 0)
{

LogString("No port defined, picking one for you");
address.sin_port = 0;

}
else
{

address.sin_port = htons((short) port);
}

address.sin_family = AF_INET;

// Bind the address to the socket
if(bind(sock, (struct sockaddr *) &address, sizeof(address)) == –1)
{

#ifdef Win32
errno = WSAGetLastError();
LogString("Error code %d: bind() : %s", errno, strerror(errno));

#else

Tutorial 2 / Creating Your Network Library 241

LogString("Error code %d: bind() : %s", errno, strerror(errno));
#endif

return DREAMSOCK_INVALID_SOCKET;
}

// Get the port number (if we did not define one,
// we get the assigned port number here)
socklen_t len = sizeof(address);
getsockname(sock, (struct sockaddr *) &address, &len);

LogString("Opening UDP port = %d", ntohs(address.sin_port));

return sock;
}

The function takes two parameters (char *netInterface, int

port). The first one defines which local IP address we want to use for
this socket. Remember that a computer can indeed have more than one
IP address (for example, if it has more than one network interface
card). If this parameter is NULL, the default network interface is used.

if(!netInterface || !netInterface[0] || !strcmp(netInterface, "localhost"))
{

LogString("No net interface given, using any interface available");
address.sin_addr.s_addr = htonl(INADDR_ANY);

}
else
{

LogString("Using net interface = '%s'", netInterface);
dreamSock_StringToSockaddr(netInterface, (struct sockaddr *) &address);

}

The same happens for the port number. If no port is defined, the func-
tion lets the kernel pick one for you.

if(port == 0)
{

LogString("No port defined, picking one for you");
address.sin_port = 0;

}
else
{

address.sin_port = htons((short) port);
}

We do not always know what port number the socket received, so we
should get the address information. This is done in the following piece
of code:

socklen_t len = sizeof(address);
getsockname(sock, (struct sockaddr *) &address, &len);

LogString("Opening UDP port = %d", ntohs(address.sin_port));

242 Tutorial 2 / Creating Your Network Library

As you can see, this function uses many of the global functions we have
introduced here. This makes the functionality simpler now that we
know how the small parts of this function works. Nice, eh?

dreamSock_CloseSocket Function

At some point we most likely want to close a socket. Here is a function
for that.

void dreamSock_CloseSocket(SOCKET sock)
{
#ifdef Win32

closesocket(sock);
#else

close(sock);
#endif
}

This is a simple function, but we still have to use two different basic
socket functions in it. We must use different function calls on different
platforms, but the functionality is the same; only the names of the func-
tions are different.

dreamSock_GetPacket Function

We need a function for receiving data, and this is it.

int dreamSock_GetPacket(SOCKET sock, char *data, struct sockaddr *from)
{

int ret;
struct sockaddr tempFrom;
socklen_t fromlen;

fromlen = sizeof(tempFrom);

ret = recvfrom(sock, data, 1400, 0, (struct sockaddr *) &tempFrom,
&fromlen);

// Copy the address to the from pointer
if(from != NULL)

*(struct sockaddr *) from = tempFrom;

if(ret == –1)
{

#ifdef Win32
errno = WSAGetLastError();

// Silently handle wouldblock
if(errno == WSAEWOULDBLOCK)

return ret;

if(errno == WSAEMSGSIZE)
{

Tutorial 2 / Creating Your Network Library 243

// ERROR: Oversize packet

return ret;
}

LogString("Error code %d: recvfrom() : %s", errno,
strerror(errno));

#else
// Silently handle wouldblock
if(errno == EWOULDBLOCK || errno == ECONNREFUSED)

return ret;

LogString("Error code %d: recvfrom() : %s", errno,
strerror(errno));

#endif

return ret;
}

return ret;
}

This function retrieves the incoming data. It has three parameters
(SOCKET sock, char *data, struct sockaddr *from).
The first one is obviously used to define the socket to read from, the
second one stores the incoming data, and the last one stores the
sender’s address information. So every time we receive data, we know
the IP address and port of the sender. On a successful call to recv-
from, this function returns the amount of data read in bytes. If the
socket is non-blocking and there is no incoming data, this function
returns –1. If the socket is blocking, this function never returns until
there is incoming data.

dreamSock_SendPacket Function

We probably want to send some data too, and this is the function we
would use.

void dreamSock_SendPacket(SOCKET sock, int length, char *data, struct
sockaddr addr)

{
int ret;

ret = sendto(sock, data, length, 0, &addr, sizeof(addr));

if(ret == –1)
{

#ifdef Win32
errno = WSAGetLastError();

// Silently handle wouldblock
if(errno == WSAEWOULDBLOCK)

244 Tutorial 2 / Creating Your Network Library

return;

LogString("Error code %d: sendto() : %s", errno,
strerror(errno));

#else
// Silently handle wouldblock
if(errno == EWOULDBLOCK)

return;

LogString("Error code %d: sendto() : %s", errno,
strerror(errno));

#endif
}

}

This function works pretty much the same way as dreamSock_Get-
Packet. The difference is the direction of the data. This time we send
it. The function has four parameters (SOCKET sock, int

length, char *data, struct sockaddr addr). The first
defines the socket, the second defines the length of the data to send (in
bytes), the third is the data itself, and the fourth is the address of the
recipient. Again, this function returns the amount of data sent in bytes.
If something went wrong, the function returns –1.

dreamSock_Broadcast Function

This function is not used in the dreamSock library, but you can use it
for broadcasting.

void dreamSock_Broadcast(SOCKET sock, int length, char *data, int port)
{

struct sockaddr_in servaddr;
socklen_t len;

// Use broadcast address
u_long inetAddr = inet_addr("255.255.255.255");

// Fill address information structure
memset(&servaddr, 0, sizeof(struct sockaddr_in));
servaddr.sin_family = AF_INET;
servaddr.sin_port = htons(port);
servaddr.sin_addr.s_addr = inetAddr;

len = sizeof(servaddr);

// Broadcast!
int ret = sendto(sock, data, length, 0, (struct sockaddr *)

&servaddr, len);

if(ret == –1)
{

Tutorial 2 / Creating Your Network Library 245

#ifdef Win32
errno = WSAGetLastError();

// Silently handle wouldblock
if(errno == WSAEWOULDBLOCK)

return;

LogString("Error code %d: sendto() : %s", errno,
strerror(errno));

#else
// Silently handle wouldblock
if(errno == EWOULDBLOCK)

return;

LogString("Error code %d: sendto() : %s", errno,
strerror(errno));

#endif
}

}

This function works the same way as dreamSock_SendPacket, but
this time we do not define the entire address of the recipient, only the
port. This is because we have to send to a broadcast address instead of
a known remote address.

dreamSock_GetCurrentSystemTime Function

We need to be aware of time, and this is the function for that.

int dreamSock_GetCurrentSystemTime(void)
{
#ifndef Win32

return dreamSock_Linux_GetCurrentSystemTime();
#else

return dreamSock_Win_GetCurrentSystemTime();
#endif
}

This function wraps the platform-specific functions, which are
introduced next.

dreamSock_Linux_GetCurrentSystemTime
Function

This is the Unix/Linux version of dreamSock_GetCurrent-
SystemTime.

int dreamSock_Linux_GetCurrentSystemTime(void)
{

struct timeval tp;
struct timezone tzp;
static int basetime;

246 Tutorial 2 / Creating Your Network Library

gettimeofday(&tp, &tzp);

if(!basetime)
{

basetime = tp.tv_sec;
return tp.tv_usec / 1000;

}

return (tp.tv_sec – basetime) * 1000 + tp.tv_usec / 1000;
}

The function returns the current system time (starting from 0).

if(!basetime)
{

basetime = tp.tv_sec;
return tp.tv_usec / 1000;

}

In this piece of code we retrieve the base time, which is the current
absolute time. This happens only once. After we have the base time
value, we use it to calculate the application run time by subtracting the
base time from the current time.

dreamSock_Win_GetCurrentSystemTime Function

This is the Windows version of dreamSock_GetCurrentSystem-
Time.

int dreamSock_Win_GetCurrentSystemTime(void)
{

int curtime;
static int base;
static bool initialized = false;

if(!initialized)
{

base = timeGetTime() & 0xffff0000;
initialized = true;

}

curtime = timeGetTime() – base;

return curtime;
}

This function returns the current system time (starting from 0).

if(!initialized)
{

base = timeGetTime() & 0xffff0000;
initialized = true;

}

Tutorial 2 / Creating Your Network Library 247

In this piece of code we retrieve the base time, which is the current
absolute time. This happens only once, and after we have the base-time
value, we use it to calculate the application run time by subtracting the
base time from the current time.

Retrieving Error Values

You most likely noticed that in most of the functions we check a vari-
able called errno, which is obviously short for error number. This
variable holds the error value number if something goes wrong. On
Windows, we need to get the value ourselves, by using the following
piece of code.

errno = WSAGetLastError();

On Unix systems, this is not required as the socket and other functions
fill in errno for us.

We can then try to retrieve a text string concerning that error value
since a plain number does not tell us much. This is done with the fol-
lowing piece of code:

strerror(errno)

This function does not always give us anything useful, but it is worth a
try.

Summary of Global Functions

Those are all the global socket functions we need and which form the
basis of our dreamSock network library. Remember that these func-
tions can be used directly if you need to do something that is not done
in the library.

Creating dreamSock Network Library

Now we will begin creating our network library by creating the three
C++ classes that make the library come alive. We will start off by cre-
ating the message buffer handling system, dreamMessage class. Then
we move on to the most complex system — the dreamClient class. The
last one is the dreamServer class. Once these classes are ready, we can
start writing our network application. So let’s get kicking!

248 Tutorial 2 / Creating Your Network Library

dreamMessage Class Member Variables

Each class has its own member variables. The following are the vari-
ables for dreamMessage and their usage:

private:
bool overFlow;
int maxSize;
int size;
int readCount;

public:
char *data;
char outgoingData[1400];

The boolean variable overFlow is used to store message size over-
flow information. Normally this variable is set to FALSE, but whenever
we try to write more bytes into the message than the maximum size is,
this variable is set to TRUE. When this happens, you cannot send the
message. The integer maxSize defines the maximum size of the mes-
sage in bytes. We can set this manually. The integer size tells us the
current size of the message. The integer readCount stores the num-
ber of bytes read from the message so far.

The char data is a pointer to the message’s data buffer. We must
set this to point to an actual char buffer. The char outgoingData is a
helper data buffer for outgoing data. We may make the data pointer
point to this buffer, but it is not required.

dreamMessage Class Functionality

The dreamMessage class is used to create the messages that we send
over the network. This class does not have the functionality to send the
messages, only to build and read them. Let’s see how everything
works. The following code listing shows all the methods of the dream-
Message class:

void dreamMessage::Init(char *d, int length)
{

data = d;
maxSize = length;
size = 0;
readCount = 0;
overFlow = false;

}

void dreamMessage::Clear(void)
{

size = 0;
readCount = 0;
overFlow = false;

Tutorial 2 / Creating Your Network Library 249

}

char *dreamMessage::GetNewPoint(int length)
{

char *tempData;

// Check for overflow
if(size + length > maxSize)
{

Clear();
overFlow = true;

}

tempData = data + size;
size += length;

return tempData;
}

void dreamMessage::AddSequences(dreamClient *client)
{

WriteShort(client->GetOutgoingSequence());
WriteShort(client->GetIncomingSequence());

}

void dreamMessage::Write(void *d, int length)
{

memcpy(GetNewPoint(length), d, length);
}

void dreamMessage::WriteByte(char c)
{

char *buf;

buf = GetNewPoint(1);

memcpy(buf, &c, 1);
}

void dreamMessage::WriteShort(short c)
{

char *buf;

buf = GetNewPoint(2);

memcpy(buf, &c, 2);
}

void dreamMessage::WriteLong(long c)
{

char *buf;

buf = GetNewPoint(4);

250 Tutorial 2 / Creating Your Network Library

memcpy(buf, &c, 4);
}

void dreamMessage::WriteFloat(float c)
{

char *buf;

buf = GetNewPoint(4);

memcpy(buf, &c, 4);
}

void dreamMessage::WriteString(char *s)
{

if(!s)
{

return;
}
else

Write(s, strlen(s) + 1);
}

void dreamMessage::BeginReading(void)
{

readCount = 0;
}

void dreamMessage::BeginReading(int s)
{

size = s;
readCount = 0;

}

char *dreamMessage::Read(int s)
{

static char c[2048];

if(readCount+s > size)
return NULL;

else
memcpy(&c, &data[readCount], s);

readCount += s;

return c;
}

char dreamMessage::ReadByte(void)
{

char c;

if(readCount+1 > size)
c = –1;

else

Tutorial 2 / Creating Your Network Library 251

memcpy(&c, &data[readCount], 1);

readCount++;

return c;
}

short dreamMessage::ReadShort(void)
{

short c;

if(readCount+2 > size)
c = –1;

else
memcpy(&c, &data[readCount], 2);

readCount += 2;

return c;
}

long dreamMessage::ReadLong(void)
{

long c;

if(readCount+4 > size)
c = –1;

else
memcpy(&c, &data[readCount], 4);

readCount += 4;

return c;
}

float dreamMessage::ReadFloat(void)
{

float c;

if(readCount+4 > size)
c = –1;

else
memcpy(&c, &data[readCount], 4);

readCount += 4;

return c;
}

char *dreamMessage::ReadString(void)
{

static char string[2048];
int l, c;

252 Tutorial 2 / Creating Your Network Library

l = 0;

do
{

c = ReadByte();

if (c == –1 || c == 0)
break;

string[l] = c;
l++;

} while(l < sizeof(string)–1);

string[l] = 0;

return string;
}

Init Function

The Init function is pretty straightforward. All it does is initialize the
class’s member variables.

void dreamMessage::Init(char *d, int length)
{

data = d;
maxSize = length;
size = 0;
readCount = 0;
overFlow = false;

}

This function takes two parameters (char *d, int length). The
first sets the buffer for the message’s actual data. Whenever we write
something to a message, we really write it into this buffer. Notice that
dreamMessage’s data member variable is only a pointer. So we must
have the buffer elsewhere, and then using Init function, we make the
data pointer point to that buffer.

The second parameter defines the maximum size of a message in
bytes. The function also resets some other variables.

Clear Function

The Clear function resets the message’s member variables without
modifying the data buffer.

void dreamMessage::Clear(void)
{

size = 0;
readCount = 0;
overFlow = false;

}

Tutorial 2 / Creating Your Network Library 253

GetNewPoint Function

This function gets a new point from the data buffer based on the given
parameter.

char *dreamMessage::GetNewPoint(int length)
{

char *tempData;

// Check for overflow
if(size + length > maxSize)
{

Clear();
overFlow = true;

}

tempData = data + size;
size += length;

return tempData;
}

This function takes only one parameter (int length), which defines
the point in the buffer to retrieve. The function then returns a pointer
that points to that position. With this function we can move around in
the data buffer and write data to its correct location.

The function checks if we are trying to write more than the maxi-
mum size of the message. If yes, the message is cleared and the
overflow flag is raised.

if(size + length > maxSize)
{

Clear();
overFlow = true;

}

The following piece of code is essential to this function. The temporary
pointer tempData is set to point to the message’s data pointer and this
pointer is moved by the current size of the message. Now we have a
completely new, untouched position in the data buffer. Well, that may
not always be true because the data buffer itself may hold some old data
at that position. But because we have the variable that holds the cur-
rent size of the message, we do not need to worry about the old data.
We will never read over to the old data part, and we will always write
on top of the old one.

tempData = data + size;
size += length;

254 Tutorial 2 / Creating Your Network Library

AddSequences Function

Understanding what this function does requires us to understand the
dreamClient class first, so do not worry about this function yet. All you
need to know now is that this function writes two shorts into the mes-
sage’s data buffer. These two shorts are the client’s message sequence
numbers. There is more about this later in this tutorial.

void dreamMessage::AddSequences(dreamClient *client)
{

WriteShort(client->GetOutgoingSequence());
WriteShort(client->GetIncomingSequence());

}

This function takes one parameter (dreamClient *client). This
parameter is a pointer to a dreamClient object. Each client uses this
function to add its own message sequences to the message.

Write Function

Here we have the first writing function. This is a generic write function
that lets us write any type of data to the message.

void dreamMessage::Write(void *d, int length)
{

memcpy(GetNewPoint(length), d, length);
}

This function takes two parameters (void *d, int length),
which define the data to write and the length of the data. Normally
when we write data, we use the other write functions that are dis-
cussed in this section. When we use those functions, we do not need to
define the size of the data ourselves because the size is known and is
always the same. But when we use the generic Write function, we
have to define the size, since it can be anything.

The function gets a new point in the data buffer and copies the given
data to that point.

WriteByte Function

The WriteByte function writes a byte into the message.

void dreamMessage::WriteByte(char c)
{

char *buf;

buf = GetNewPoint(1);

memcpy(buf, &c, 1);
}

Tutorial 2 / Creating Your Network Library 255

This function takes the data to write as a parameter and then writes it
to the buffer.

WriteShort Function

The WriteShort function writes a short into the message.

void dreamMessage::WriteShort(short c)
{

char *buf;

buf = GetNewPoint(2);

memcpy(buf, &c, 2);
}

This function takes the data to write as a parameter and writes it to the
buffer. A short takes 2 bytes.

WriteLong Function

The WriteLong function writes a long into the message.

void dreamMessage::WriteLong(long c)
{

char *buf;

buf = GetNewPoint(4);

memcpy(buf, &c, 4);
}

This function takes the data to write as a parameter and writes it to the
buffer. A long takes 4 bytes.

WriteFloat Function

The WriteFloat function writes a float into the message.

void dreamMessage::WriteFloat(float c)
{

char *buf;

buf = GetNewPoint(4);

memcpy(buf, &c, 4);
}

This function takes the data to write as a parameter and then writes it
to the buffer. A float takes 4 bytes.

256 Tutorial 2 / Creating Your Network Library

WriteString Function

The WriteString function writes a string into the message.

void dreamMessage::WriteString(char *s)
{

if(!s)
{

return;
}
else

Write(s, strlen(s) + 1);
}

This function takes the data to write as a parameter and writes it to the
buffer. If the string is NULL, nothing is written. We do not need to
define the length of the string, because we can use the strlen func-
tion to get that.

BeginReading Function

There are two versions of the BeginReading function. They both set
the current size of the message.

void dreamMessage::BeginReading(void)
{

readCount = 0;
}

void dreamMessage::BeginReading(int s)
{

size = s;
readCount = 0;

}

The purpose of this function is to reset the readCount member vari-
able so reading begins from the beginning. The second version takes
one parameter (int s) that defines the current size of the message.

Read Function

This function reads a defined amount of data.

char *dreamMessage::Read(int s)
{

static char c[2048];

if(readCount+s > size)
return NULL;

else
memcpy(&c, &data[readCount], s);

readCount += s;

Tutorial 2 / Creating Your Network Library 257

return c;
}

This function has one parameter (int s) that defines the amount of
data to read. Member variable readCount keeps track of the current
position in the data buffer.

The function checks for buffer overflow, as shown in the following
piece of code.

if(readCount+s > size)
return NULL;

else
memcpy(&c, &data[readCount], s);

If we try to read more data than the message holds, nothing is read.

ReadByte Function

This function reads a byte from the data buffer.

char dreamMessage::ReadByte(void)
{

char c;

if(readCount+1 > size)
c = –1;

else
memcpy(&c, &data[readCount], 1);

readCount++;

return c;
}

Once the reading is done, the function returns a byte that holds the
data it just read. The function checks for buffer overflow.

ReadShort Function

This function reads a short from the data buffer.

short dreamMessage::ReadShort(void)
{

short c;

if(readCount+2 > size)
c = –1;

else
memcpy(&c, &data[readCount], 2);

readCount += 2;

return c;
}

258 Tutorial 2 / Creating Your Network Library

Once the reading is done, the function returns a short that holds the
data it just read. The function checks for buffer overflow.

ReadLong Function

This function reads a long from the data buffer.

long dreamMessage::ReadLong(void)
{

long c;

if(readCount+4 > size)
c = –1;

else
memcpy(&c, &data[readCount], 4);

readCount += 4;

return c;
}

Once the reading is done, the function returns a long that holds the data
it just read. The function checks for buffer overflow.

ReadFloat Function

This function reads a float from the data buffer.

float dreamMessage::ReadFloat(void)
{

float c;

if(readCount+4 > size)
c = –1;

else
memcpy(&c, &data[readCount], 4);

readCount += 4;

return c;
}

Once the reading is done, the function returns a float that holds the
data it just read. The function checks for buffer overflow.

ReadString Function

This function reads a string from the data buffer.

char *dreamMessage::ReadString(void)
{

static char string[2048];
int l, c;

Tutorial 2 / Creating Your Network Library 259

l = 0;

do
{

c = ReadByte();

if (c == –1 || c == 0)
break;

string[l] = c;
l++;

} while(l < sizeof(string)–1);

string[l] = 0;

return string;
}

Once the reading is done, the function returns a pointer to a string that
holds the data it just read. The function checks for buffer overflow.

The function reads the string byte by byte. If the byte is 0 or –1,
reading is stopped. That means the string ends. This is shown here.

do
{

c = ReadByte();

if (c == –1 || c == 0)
break;

string[l] = c;
l++;

} while(l < sizeof(string)–1);

dreamMessage Summary

That is all of the dreamMessage class. We now have the functionality to
write messages but no way to send them yet. So next we need to cre-
ate dreamClient and dreamServer.

dreamClient Class Member Variables

Here are the member variables for dreamClient and their purposes.

private:
int connectionState; // Connecting, connected,

// disconnecting, disconnected

unsigned short outgoingSequence; // Outgoing packet sequence
unsigned short incomingSequence; // Incoming packet sequence
unsigned short incomingAcknowledged; // Last packet acknowledged

// by other end

260 Tutorial 2 / Creating Your Network Library

unsigned short droppedPackets; // Dropped packets

int serverPort; // Port
char serverIP[32]; // IP address
int index; // Client index (starts from 1,

// running number)
char name[32]; // Client name

SOCKET socket; // Socket
struct sockaddr myaddress; // Socket address

int pingSent; // When did we send ping?
int ping; // Network latency

int lastMessageTime;

bool init;

public:
dreamMessage message;
dreamClient *next;

The integer connectionState tells us the current state of the con-
nection. It can be one of these: connecting, connected, disconnecting,
or disconnected. The unsigned short outgoingSequence keeps
track of the message numbers that we have sent. The first one has
number or sequence 1, the next one 2, and so on. The unsigned short
incomingSequence keeps track of received messages’ sequence
numbers. This number is set every time we receive a message from a
remote host. The sequence is set to match the remote host’s
outgoingSequence. This may be old information though, because
the sequence is picked from the last received message, and before we
got that message, the remote host may have sent another packet. But
that is not usually a problem so do not worry about it. The unsigned
short incomingAcknowledged keeps track of the last packet the
remote host acknowledged. This is actually the remote host’s
incomingSequence. Now we have a nice little loop so we don’t have
to worry about dropped packets. If a packet is dropped, it is lost, but the
sequence numbers will not get mixed up. The unsigned short
droppedPackets stores information about the amount of dropped
packets this frame. The integer serverPort stores the server’s port
number. The char serverIP stores the server’s IP address. The inte-
ger index is unique for every client. The server gives this number to
us. The number is incremented starting from 1. Every time a client
connects the server, this number increases and the new client gets that
new number. This number is unique to each client since the index num-
ber is never decreased on the server. The char name stores the name
of this client.

Tutorial 2 / Creating Your Network Library 261

The SOCKET socket variable holds the socket for each client.
This is not used on the server side. The struct sockaddr myaddress
is the socket’s socket address.

The integer pingSent tells us the time we sent our ping message.
The integer ping tell us the network latency. The integer lastMes-
sageTime tells us when the server received the last message from
this client. The boolean Init is a flag that tells us whether the client
has been initialized.

The dreamMessage message is the client’s internal message. This
is more like a helper variable than a requirement. We can use an exter-
nal message to send data, but we also can use this one. The dream-
Client next is a pointer to the next client in the client list. This is used
on the server only, as clients do not have client lists.

dreamClient Class Functionality

The dreamClient class is used on both the server side and the client
side. On the server side, there is a list of clients that controls all the
communication with the real clients. On the client side, this class is
used to connect to the server. Here are all the methods of dreamClient:

dreamClient::dreamClient()
{

connectionState = DREAMSOCK_DISCONNECTED;

outgoingSequence = 1;
incomingSequence = 0;
incomingAcknowledged = 0;
droppedPackets = 0;

init = false;

serverPort = 0;

pingSent = 0;
ping = 0;

lastMessageTime = 0;

next = NULL;
}

dreamClient::~dreamClient()
{

dreamSock_CloseSocket(socket);
}

int dreamClient::Initialize(char *localIP, char *remoteIP, int port)
{

// Initialize dreamSock if it is not already initialized

262 Tutorial 2 / Creating Your Network Library

dreamSock_Initialize();

// Save server's address information for later use
serverPort = port;
strcpy(serverIP, remoteIP);

LogString("Server's information: IP address: %s, port: %d", serverIP,
serverPort);

// Create client socket
socket = dreamSock_OpenUDPSocket(localIP, 0);

// Check that the address is not empty
u_long inetAddr = inet_addr(serverIP);

if(inetAddr == INADDR_NONE)
{

return DREAMSOCK_CLIENT_ERROR;
}

if(socket == DREAMSOCK_INVALID_SOCKET)
{

return DREAMSOCK_CLIENT_ERROR;
}

init = true;

return 0;
}

void dreamClient::Uninitialize(void)
{

dreamSock_CloseSocket(socket);

Reset();

init = false;
}

void dreamClient::Reset(void)
{

connectionState = DREAMSOCK_DISCONNECTED;

outgoingSequence = 1;
incomingSequence = 0;
incomingAcknowledged = 0;
droppedPackets = 0;

pingSent = 0;
ping = 0;

lastMessageTime = 0;

next = NULL;

Tutorial 2 / Creating Your Network Library 263

}

void dreamClient::DumpBuffer(void)
{

char data[1400];
int ret;

while((ret = dreamSock_GetPacket(socket, data, NULL)) > 0)
{
}

}

void dreamClient::SendConnect(char *name)
{

// Dump buffer so there won't be any old packets to process
DumpBuffer();

connectionState = DREAMSOCK_CONNECTING;

message.Init(message.outgoingData, sizeof(message.outgoingData));
message.WriteByte(DREAMSOCK_MES_CONNECT);
message.WriteString(name);

SendPacket(&message);
}

void dreamClient::SendDisconnect(void)
{

message.Init(message.outgoingData, sizeof(message.outgoingData));
message.WriteByte(DREAMSOCK_MES_DISCONNECT);

SendPacket(&message);
Reset();

connectionState = DREAMSOCK_DISCONNECTING;
}

void dreamClient::SendPing(void)
{

pingSent = dreamSock_GetCurrentSystemTime();

message.Init(message.outgoingData, sizeof(message.outgoingData));
message.WriteByte(DREAMSOCK_MES_PING);

SendPacket(&message);
}

void dreamClient::ParsePacket(dreamMessage *mes)
{

mes->BeginReading();
int type = mes->ReadByte();

// Check if the type is a positive number
// = is the packet sequenced

264 Tutorial 2 / Creating Your Network Library

if(type > 0)
{

unsigned short sequence = mes->ReadShort();
unsigned short sequenceAck = mes->ReadShort();

if(sequence <= incomingSequence)
{

LogString("Client: (sequence: %d <= incoming seq: %d)",
sequence, incomingSequence);

LogString("Client: Sequence mismatch");
}

droppedPackets = sequence – incomingSequence + 1;

incomingSequence = sequence;
incomingAcknowledged = sequenceAck;

}

// Parse through the system messages
switch(type)
{
case DREAMSOCK_MES_CONNECT:

connectionState = DREAMSOCK_CONNECTED;

LogString("LIBRARY: Client: got connect confirmation");
break;

case DREAMSOCK_MES_DISCONNECT:
connectionState = DREAMSOCK_DISCONNECTED;

LogString("LIBRARY: Client: got disconnect confirmation");
break;

case DREAMSOCK_MES_ADDCLIENT:
LogString("LIBRARY: Client: adding a client");
break;

case DREAMSOCK_MES_REMOVECLIENT:
LogString("LIBRARY: Client: removing a client");
break;

case DREAMSOCK_MES_PING:
SendPing();
break;

}
}

int dreamClient::GetPacket(char *data, struct sockaddr *from)
{

// Check if the client is set up or if it is disconnecting
if(!socket)

return 0;

Tutorial 2 / Creating Your Network Library 265

int ret;

dreamMessage mes;
mes.Init(data, sizeof(data));

ret = dreamSock_GetPacket(socket, mes.data, from);

if(ret <= 0)
return 0;

mes.SetSize(ret);

// Parse system messages
ParsePacket(&mes);

return ret;
}

void dreamClient::SendPacket(void)
{

// Check that everything is set up
if(!socket || connectionState == DREAMSOCK_DISCONNECTED)
{

LogString("SendPacket error: Could not send because the client
is disconnected");

return;
}

// If the message overflowed, do not send it
if(message.GetOverFlow())
{

LogString("SendPacket error: Could not send because the buffer
overflowed");

return;
}

// Check if serverPort is set. If it is, we are a client sending to
// the server. Otherwise we are a server sending to a client.
if(serverPort)
{

struct sockaddr_in sendToAddress;
memset((char *) &sendToAddress, 0, sizeof(sendToAddress));

u_long inetAddr = inet_addr(serverIP);
sendToAddress.sin_port = htons((u_short) serverPort);
sendToAddress.sin_family = AF_INET;
sendToAddress.sin_addr.s_addr = inetAddr;

dreamSock_SendPacket(socket, message.GetSize(), message.data,
*(struct sockaddr *) &sendToAddress);

}
else
{

dreamSock_SendPacket(socket, message.GetSize(), message.data,

266 Tutorial 2 / Creating Your Network Library

myaddress);
}

// Check if the packet is sequenced
message.BeginReading();
int type = message.ReadByte();

if(type > 0)
{

outgoingSequence++;
}

}

void dreamClient::SendPacket(dreamMessage *theMes)
{

// Check that everything is set up
if(!socket || connectionState == DREAMSOCK_DISCONNECTED)
{

LogString("SendPacket error: Could not send because the client
is disconnected");

return;
}

// If the message overflowed, do not send it
if(theMes->GetOverFlow())
{

LogString("SendPacket error: Could not send because the buffer
overflowed");

return;
}

// Check if serverPort is set. If it is, we are a client sending to
// the server. Otherwise we are a server sending to a client.
if(serverPort)
{

struct sockaddr_in sendToAddress;
memset((char *) &sendToAddress, 0, sizeof(sendToAddress));

u_long inetAddr = inet_addr(serverIP);
sendToAddress.sin_port = htons((u_short) serverPort);
sendToAddress.sin_family = AF_INET;
sendToAddress.sin_addr.s_addr = inetAddr;

dreamSock_SendPacket(socket, theMes->GetSize(), theMes->data,
*(struct sockaddr *) &sendToAddress);

}
else
{

dreamSock_SendPacket(socket, theMes->GetSize(), theMes->data,
myaddress);

}

// Check if the packet is sequenced
theMes->BeginReading();

Tutorial 2 / Creating Your Network Library 267

int type = theMes->ReadByte();

if(type > 0)
{

outgoingSequence++;
}

}

dreamClient Constructor

The dreamClient constructor sets up everything for network
connection.

dreamClient::dreamClient()
{

connectionState = DREAMSOCK_DISCONNECTED;

outgoingSequence = 1;
incomingSequence = 0;
incomingAcknowledged = 0;
droppedPackets = 0;

init = false;

serverPort = 0;
pingSent = 0;
ping = 0;
lastMessageTime = 0;

next = NULL;
}

dreamClient Destructor

The destructor does nothing but try to close the socket. It does not
matter if the socket is already closed.

dreamClient::~dreamClient()
{

dreamSock_CloseSocket(socket);
}

Initialize Function

This function initializes the client and readies it for a network connec-
tion with the server. This function does not send anything to the
server, as it only sets up the client. This is a client-side function only.

int dreamClient::Initialize(char *localIP, char *remoteIP, int port)
{

// Initialize dreamSock if it is not already initialized
dreamSock_Initialize();

// Save server's address information for later use

268 Tutorial 2 / Creating Your Network Library

serverPort = port;
strcpy(serverIP, remoteIP);

LogString("Server's information: IP address: %s, port: %d", serverIP,
serverPort);

// Create client socket
socket = dreamSock_OpenUDPSocket(localIP, 0);

// Check that the address is not empty
u_long inetAddr = inet_addr(serverIP);

if(inetAddr == INADDR_NONE)
{

return DREAMSOCK_CLIENT_ERROR;
}

if(socket == DREAMSOCK_INVALID_SOCKET)
{

return DREAMSOCK_CLIENT_ERROR;
}

init = true;

return 0;
}

This function takes three parameters (char *localIP, char
*remoteIP, and int port). The first parameter defines the local IP
address to use (if we have multiple network interface cards). If this is
NULL, the default is used. The second parameter is the server’s IP
address and the third one is the server’s port number.

The function then opens a UDP socket using the given information.

socket = dreamSock_OpenUDPSocket(localIP, 0);

After this function successfully returns, the client is ready to start
sending data to the server.

Uninitialize Function

This function uninitializes the client’s network connection ability.

void dreamClient::Uninitialize(void)
{

dreamSock_CloseSocket(socket);

Reset();

init = false;
}

The socket is closed and all the member variables are reset with the
Reset function.

Tutorial 2 / Creating Your Network Library 269

Reset Function

The Reset function does what the name tells you — it resets the
client.

void dreamClient::Reset(void)
{

connectionState = DREAMSOCK_DISCONNECTED;

outgoingSequence = 1;
incomingSequence = 0;
incomingAcknowledged = 0;
droppedPackets = 0;

pingSent = 0;
ping = 0;
lastMessageTime = 0;

next = NULL;
}

All the important member variables are set to their initial state so a
connection process can be started all over again if required.

DumpBuffer Function

This function’s purpose is to dump the incoming data buffer by reading
all the incoming packets and just dumping them (not processing them
at all).

void dreamClient::DumpBuffer(void)
{

char data[1400];
int ret;

while((ret = dreamSock_GetPacket(socket, data, NULL)) > 0)
{
}

}

The buffer is dumped by calling dreamSock_GetPacket as long
there is anything to read. This way a new connection will not get the
packets from any old connections.

System Messages vs. User Messages

Now let’s take a moment to talk about system messages and user mes-
sages. A system message is a message that is built into the system (in
this case, into our network library). A user message, on the other hand,
is the user’s own message, and all the processing for that happens in
the final network application, not in the library.

270 Tutorial 2 / Creating Your Network Library

Every message’s first byte must contain its type. A message cannot
be identified without having a type value attached to it. This is the first
thing that we read from a packet, and once we have identified the mes-
sage type we can move on to the correct direction.

We will create five system messages for dreamSock — one for con-
necting to the server, one for disconnecting from the server, one for
adding a client, and one for removing a client. The fifth is for pinging
clients to calculate the network latency. They are defined as follows:

#define DREAMSOCK_MES_CONNECT –101
#define DREAMSOCK_MES_DISCONNECT –102
#define DREAMSOCK_MES_ADDCLIENT –103
#define DREAMSOCK_MES_REMOVECLIENT –104
#define DREAMSOCK_MES_PING –105

Did you notice that the messages’ type value is actually negative? This
is used to tell dreamSock that the message should not be sequenced.
And that means that no sequence numbers are attached to the mes-
sages. This works for user messages also; just make the type value
negative. We will see how all this works later.

dreamSock will then process these messages and act accordingly. All
the system messages can be reprocessed in the final application. This is
very useful as we can then use the same messages for adding a client,
for example. You may wonder why we would need to add a client there
also, if that is done in the library already. Well, the answer is the game’s
data for each client. Since dreamClient only holds the information
required for the network connection, we probably need another struc-
ture to hold the game data. But enough about that for now.

We will now create some functions for dreamSock that process the
system messages. So when we want to connect a server, we just call
one function. Simple, but effective.

SendConnect Function

This function sends a connection request to the server.

void dreamClient::SendConnect(char *name)
{

// Dump buffer so there won't be any old packets to process
DumpBuffer();

connectionState = DREAMSOCK_CONNECTING;

message.Init(message.outgoingData, sizeof(message.outgoingData));
message.WriteByte(DREAMSOCK_MES_CONNECT);
message.WriteString(name);

SendPacket(&message);
}

Tutorial 2 / Creating Your Network Library 271

The function takes one parameter (char *name), which is used to
define the name of the client. The function will add this name to the
message and then send it to the server. When the server receives this
message, it will add a client to its client list and send an “add client”
message to each connected client.

As you can see, we use the dreamMessage class to create the
message. First we initialize it by setting the data buffer and its maxi-
mum size. Then we write one byte to it, which tells the system the
type of the message. Finally we add the name string to the message
and send the packet to the server. The SendPacket function is intro-
duced later in this tutorial.

message.Init(message.outgoingData, sizeof(message.outgoingData));
message.WriteByte(DREAMSOCK_MES_CONNECT);
message.WriteString(name);

SendPacket(&message);

SendDisconnect Function

This function sends a disconnect message to the server.

void dreamClient::SendDisconnect(void)
{

message.Init(message.outgoingData, sizeof(message.outgoingData));
message.WriteByte(DREAMSOCK_MES_DISCONNECT);

SendPacket(&message);
Reset();

connectionState = DREAMSOCK_DISCONNECTING;
}

This function works the same way as SendConnect does. It sends a
system message to the server, telling it that we want to disconnect.
After the message is sent, the client resets itself.

SendPing Function

This function sends a ping message to the server.

void dreamClient::SendPing(void)
{

pingSent = dreamSock_GetCurrentSystemTime();

message.Init(message.outgoingData, sizeof(message.outgoingData));
message.WriteByte(DREAMSOCK_MES_PING);

SendPacket(&message);
}

272 Tutorial 2 / Creating Your Network Library

This function is run when the server pings the client first. The function
responds to the server by pinging back.

ParsePacket Function

This function parses incoming system messages and handles
sequenced messages.

void dreamClient::ParsePacket(dreamMessage *mes)
{

mes->BeginReading();
int type = mes->ReadByte();

// Check if the type is a positive number
// = is the packet sequenced
if(type > 0)
{

unsigned short sequence = mes->ReadShort();
unsigned short sequenceAck = mes->ReadShort();

if(sequence <= incomingSequence)
{

LogString("Client: (sequence: %d <= incoming seq: %d)",
sequence, incomingSequence);

LogString("Client: Sequence mismatch");
}

droppedPackets = sequence – incomingSequence + 1;

incomingSequence = sequence;
incomingAcknowledged = sequenceAck;

}

// Parse through the system messages
switch(type)
{
case DREAMSOCK_MES_CONNECT:

connectionState = DREAMSOCK_CONNECTED;

LogString("LIBRARY: Client: got connect confirmation");
break;

case DREAMSOCK_MES_DISCONNECT:
connectionState = DREAMSOCK_DISCONNECTED;

LogString("LIBRARY: Client: got disconnect confirmation");
break;

case DREAMSOCK_MES_ADDCLIENT:
LogString("LIBRARY: Client: adding a client");
break;

Tutorial 2 / Creating Your Network Library 273

case DREAMSOCK_MES_REMOVECLIENT:
LogString("LIBRARY: Client: removing a client");
break;

case DREAMSOCK_MES_PING:
SendPing();
break;

}
}

This function takes one parameter (dreamMessage *mes). It is a
pointer to the message to parse.

Parsing begins by reading the type of the message from the packet:

mes->BeginReading();
int type = mes->ReadByte();

Then we check if the type value is a positive number — in other words,
whether the message is sequenced. If it is, we read the sequence num-
bers from the packet. First is the remote host’s outgoing sequence
number and then its incoming sequence number. We call them incom-
ing sequence and acknowledged sequence. Sound confusing? Well, at
first it may be so, but if you really think about it for a while, it is quite
simple.

if(type > 0)
{

unsigned short sequence = mes->ReadShort();
unsigned short sequenceAck = mes->ReadShort();

if(sequence <= incomingSequence)
{

LogString("Client: (sequence: %d <= incoming seq: %d)",
sequence, incomingSequence);

LogString("Client: Sequence mismatch");
}

droppedPackets = sequence – incomingSequence + 1;

incomingSequence = sequence;
incomingAcknowledged = sequenceAck;

}

Then we parse the system messages. On the client side, there is noth-
ing important going on here, if you do not count the connection state
changes and ping response. These are mainly confirmations only.

// Parse through the system messages
switch(type)
{
case DREAMSOCK_MES_CONNECT:

connectionState = DREAMSOCK_CONNECTED;

274 Tutorial 2 / Creating Your Network Library

LogString("LIBRARY: Client: got connect confirmation");
break;

case DREAMSOCK_MES_DISCONNECT:
connectionState = DREAMSOCK_DISCONNECTED;

LogString("LIBRARY: Client: got disconnect confirmation");
break;

case DREAMSOCK_MES_ADDCLIENT:
LogString("LIBRARY: Client: adding a client");
break;

case DREAMSOCK_MES_REMOVECLIENT:
LogString("LIBRARY: Client: removing a client");
break;

case DREAMSOCK_MES_PING:
SendPing();
break;

}

GetPacket Function

This function reads packets from the server and then moves them on to
parsing.

int dreamClient::GetPacket(char *data, struct sockaddr *from)
{

// Check if the client is set up or if it is disconnecting
if(!socket)

return 0;

int ret;

dreamMessage mes;
mes.Init(data, sizeof(data));

ret = dreamSock_GetPacket(socket, mes.data, from);

if(ret <= 0)
return 0;

mes.SetSize(ret);

// Parse system messages
ParsePacket(&mes);

return ret;
}

This function takes two parameters (char *data, struct

sockaddr *from). The first one is a pointer to the data buffer, which
will be filled by this function. The other is a socket address pointer,

Tutorial 2 / Creating Your Network Library 275

which will also be filled by this function. So when we receive a packet,
we also get the address from where it came. This information can be
ignored, but it is useful to know.

We read the data into a dreamMessage so we can then parse it in the
ParsePacket function. If dreamSock_GetPacket returns a nega-
tive number or 0, we do not process the packet any further, because
there is no packet to process.

dreamMessage mes;
mes.Init(data, sizeof(data));

ret = dreamSock_GetPacket(socket, mes.data, from);

if(ret <= 0)
return 0;

mes.SetSize(ret);

// Parse system messages
ParsePacket(&mes);

SendPacket Function (Internal Message)

There are two versions of the SendPacket function. This one sends
the internal message of dreamClient (message member variable).
This function can be run on both the server side and the client side. In
fact, the server sends packets to clients with this very function.

void dreamClient::SendPacket(void)
{

// Check that everything is set up
if(!socket || connectionState == DREAMSOCK_DISCONNECTED)
{

LogString("SendPacket error: Could not send because the client
is disconnected");

return;
}

// If the message overflowed, do not send it
if(message.GetOverFlow())
{

LogString("SendPacket error: Could not send because the buffer
overflowed");

return;
}

// Check if serverPort is set. If it is, we are a client sending to
// the server. Otherwise we are a server sending to a client.
if(serverPort)
{

struct sockaddr_in sendToAddress;

276 Tutorial 2 / Creating Your Network Library

memset((char *) &sendToAddress, 0, sizeof(sendToAddress));

u_long inetAddr = inet_addr(serverIP);
sendToAddress.sin_port = htons((u_short) serverPort);
sendToAddress.sin_family = AF_INET;
sendToAddress.sin_addr.s_addr = inetAddr;

dreamSock_SendPacket(socket, message.GetSize(), message.data,
*(struct sockaddr *) &sendToAddress);

}
else
{

dreamSock_SendPacket(socket, message.GetSize(), message.data,
myaddress);

}

// Check if the packet is sequenced
message.BeginReading();
int type = message.ReadByte();

if(type > 0)
{

outgoingSequence++;
}

}

First we do some checking that it is okay to send data. We check that
we have a socket and that we are not disconnected. If the message
overflowed, we will not send it because some parts of the message are
missing.

// Check that everything is set up
if(!socket || connectionState == DREAMSOCK_DISCONNECTED)
{

LogString("SendPacket error: Could not send because the client is
disconnected");

return;
}

// If the message overflowed, do not send it
if(message.GetOverFlow())
{

LogString("SendPacket error: Could not send because the buffer
overflowed");

return;
}

Then we check if we are a server trying to send to a client or vice
versa. An easy way to check this is to see if the server port number is
set. If it is, we are a client sending to the server, because only clients
set the serverPort variable. So we fill in the server’s address infor-
mation and send the packet to that address. On the server side we just

Tutorial 2 / Creating Your Network Library 277

use the client’s address, which is set when the client connects to the
server.

Notice that the data we send comes from the dreamClient’s mes-
sage member variable.

if(serverPort)
{

struct sockaddr_in sendToAddress;
memset((char *) &sendToAddress, 0, sizeof(sendToAddress));

u_long inetAddr = inet_addr(serverIP);
sendToAddress.sin_port = htons((u_short) serverPort);
sendToAddress.sin_family = AF_INET;
sendToAddress.sin_addr.s_addr = inetAddr;

dreamSock_SendPacket(socket, message.GetSize(), message.data,
*(struct sockaddr *) &sendToAddress);

}
else
{

dreamSock_SendPacket(socket, message.GetSize(), message.data,
myaddress);

}

Finally we increase the outgoing sequence number, if the message is
sequenced.

// Check if the packet is sequenced
message.BeginReading();
int type = message.ReadByte();

if(type > 0)
{

outgoingSequence++;
}

SendPacket Function (External Message)

This function sends an external message given as a parameter. It can be
run on both the server side and the client side.

void dreamClient::SendPacket(dreamMessage *theMes)
{

// Check that everything is set up
if(!socket || connectionState == DREAMSOCK_DISCONNECTED)
{

LogString("SendPacket error: Could not send because the client
is disconnected");

return;
}

// If the message overflowed, do not send it
if(theMes->GetOverFlow())

278 Tutorial 2 / Creating Your Network Library

{
LogString("SendPacket error: Could not send because the buffer

overflowed");
return;

}

// Check if serverPort is set. If it is, we are a client sending to
// the server. Otherwise we are a server sending to a client.
if(serverPort)
{

struct sockaddr_in sendToAddress;
memset((char *) &sendToAddress, 0, sizeof(sendToAddress));

u_long inetAddr = inet_addr(serverIP);
sendToAddress.sin_port = htons((u_short) serverPort);
sendToAddress.sin_family = AF_INET;
sendToAddress.sin_addr.s_addr = inetAddr;

dreamSock_SendPacket(socket, theMes->GetSize(), theMes->data,
*(struct sockaddr *) &sendToAddress);

}
else
{

dreamSock_SendPacket(socket, theMes->GetSize(), theMes->data,
myaddress);

}

// Check if the packet is sequenced
theMes->BeginReading();
int type = theMes->ReadByte();

if(type > 0)
{

outgoingSequence++;
}

}

This function works exactly the same way as the internal message ver-
sion. The only difference is that this function takes one parameter
(dreamMessage *theMes), which is the message to send.

dreamSock_SendPacket(socket, theMes->GetSize(), theMes->data, myaddress);

dreamClient Summary

That concludes the dreamClient methods. Now we have the client side
fully ready, but we cannot do anything with it yet, because the server
side is not ready. So what are we waiting for? Let’s go finish our library!

Tutorial 2 / Creating Your Network Library 279

dreamServer Class Member Variables

Here are the member variables for dreamServer and their purposes.

private:
dreamClient *clientList;

int port; // Port
SOCKET socket; // Socket
int runningIndex; // Running index numbers for new clients

bool init;

The dreamClient clientList is a linked list of all the connected cli-
ents. If it is NULL, no clients are connected. The integer port stores
the port number of the server. The SOCKET socket holds the socket
of the server. All network communication happens through this socket.

The integer runningIndex is an index number for incoming cli-
ents. Every time a client connects to the server, this number is
increased and given to the client as its index number. The number is
unique for every client. The boolean init tells us whether the server
has been initialized.

dreamServer Class Functionality

The dreamServer class is used only on the server side. This class han-
dles the incoming clients and their network connections. Here are all
the methods of dreamServer:

dreamServer::dreamServer()
{

init = false;

port = 0;
runningIndex = 1;
socket = 0;
clientList = NULL;

}

dreamServer::~dreamServer()
{

dreamClient *list = clientList;
dreamClient *next;

while(list != NULL)
{

next = list->next;

if(list)
{

free(list);

280 Tutorial 2 / Creating Your Network Library

}

list = next;
}

clientList = NULL;

dreamSock_CloseSocket(socket);
}

int dreamServer::Initialize(char *localIP, int serverPort)
{

// Initialize dreamSock if it is not already initialized
dreamSock_Initialize();

// Store the server IP and port for later use
port = serverPort;

// Create server socket
socket = dreamSock_OpenUDPSocket(localIP, port);

if(socket == DREAMSOCK_INVALID_SOCKET)
{

return DREAMSOCK_SERVER_ERROR;
}

init = true;

return 0;
}

void dreamServer::Uninitialize(void)
{

dreamSock_CloseSocket(socket);

init = false;
}

void dreamServer::SendAddClient(dreamClient *newClient)
{

// Send connection confirmation
newClient->message.Init(newClient->message.outgoingData,

sizeof(newClient->message.outgoingData));

newClient->message.WriteByte(DREAMSOCK_MES_CONNECT); // type
newClient->SendPacket();

// Send 'Add client' message to every client
dreamClient *client = clientList;

// First inform the new client of the other clients
for(; client != NULL; client = client->next)
{

Tutorial 2 / Creating Your Network Library 281

newClient->message.Init(newClient->message.outgoingData,
sizeof(newClient->message.outgoingData));

newClient->message.WriteByte(DREAMSOCK_MES_ADDCLIENT); // type

if(client == newClient)
{

newClient->message.WriteByte(1); // local client
newClient->message.WriteByte(client->GetIndex());
newClient->message.WriteString(client->GetName());

}
else
{

newClient->message.WriteByte(0); // not local client
newClient->message.WriteByte(client->GetIndex());
newClient->message.WriteString(client->GetName());

}

newClient->SendPacket();
}

// Then tell the others about the new client
for(client = clientList; client != NULL; client = client->next)
{

if(client == newClient)
continue;

client->message.Init(client->message.outgoingData,
sizeof(client->message.outgoingData));

client->message.WriteByte(DREAMSOCK_MES_ADDCLIENT); // type

client->message.WriteByte(0);
client->message.WriteByte(newClient->GetIndex());
client->message.WriteString(newClient->GetName());

client->SendPacket();
}

}

void dreamServer::SendRemoveClient(dreamClient *client)
{

int index = client->GetIndex();

// Send 'Remove client' message to every client
dreamClient *list = clientList;

for(; list != NULL; list = list->next)
{

list->message.Init(list->message.outgoingData,
sizeof(list->message.outgoingData));

list->message.WriteByte(DREAMSOCK_MES_REMOVECLIENT); // type
list->message.WriteByte(index); // index

282 Tutorial 2 / Creating Your Network Library

}

SendPackets();

// Send disconnection confirmation
client->message.Init(client->message.outgoingData,

sizeof(client->message.outgoingData));

client->message.WriteByte(DREAMSOCK_MES_DISCONNECT);
client->SendPacket();

}

void dreamServer::SendPing(void)
{

// Send ping message to every client
dreamClient *list = clientList;

for(; list != NULL; list = list->next)
{

list->SendPing();
}

}

void dreamServer::AddClient(struct sockaddr *address, char *name)
{

// First get a pointer to the beginning of client list
dreamClient *list = clientList;
dreamClient *prev;
dreamClient *newClient;

LogString("LIB: Adding client, index %d", runningIndex);

// No clients yet, adding the first one
if(clientList == NULL)
{

LogString("LIB: Server: Adding first client");

clientList = (dreamClient *) calloc(1, sizeof(dreamClient));

clientList->SetSocket(socket);
clientList->SetSocketAddress(address);

clientList->SetConnectionState(DREAMSOCK_CONNECTING);
clientList->SetOutgoingSequence(1);
clientList->SetIncomingSequence(0);
clientList->SetIncomingAcknowledged(0);
clientList->SetIndex(runningIndex);
clientList->SetName(name);
clientList->next = NULL;

newClient = clientList;
}
else
{

Tutorial 2 / Creating Your Network Library 283

LogString("LIB: Server: Adding another client");

prev = list;
list = clientList->next;

while(list != NULL)
{

prev = list;
list = list->next;

}

list = (dreamClient *) calloc(1, sizeof(dreamClient));

list->SetSocket(socket);
list->SetSocketAddress(address);

list->SetConnectionState(DREAMSOCK_CONNECTING);
list->SetOutgoingSequence(1);
list->SetIncomingSequence(0);
list->SetIncomingAcknowledged(0);
list->SetIndex(runningIndex);
list->SetName(name);
list->next = NULL;

prev->next = list;

newClient = list;
}

runningIndex++;

SendAddClient(newClient);
}

void dreamServer::RemoveClient(dreamClient *client)
{

dreamClient *list = NULL;
dreamClient *prev = NULL;
dreamClient *next = NULL;

int index = client->GetIndex();

LogString("LIB: Removing client with index %d", index);

SendRemoveClient(client);

for(list = clientList; list != NULL; list = list->next)
{

if(client == list)
{

if(prev != NULL)
{

prev->next = client->next;

284 Tutorial 2 / Creating Your Network Library

}

break;
}

prev = list;
}

if(client == clientList)
{

LogString("LIB: Server: removing first client in list");

if(list) next = list->next;

if(client) free(client);
client = NULL;
clientList = next;

}
else
{

LogString("LIB: Server: removing a client");

if(list) next = list->next;

if(client) free(client);
client = next;

}
}

void dreamServer::ParsePacket(dreamMessage *mes, struct sockaddr *address)
{

mes->BeginReading();
int type = mes->ReadByte();

// Find the correct client by comparing addresses
dreamClient *clList = clientList;

// If we do not have clients yet, skip to message type checking
if(clList != NULL)
{

for(; clList != NULL; clList = clList->next)
{

if(memcmp(clList->GetSocketAddress(), address,
sizeof(address)) == 0)

{
break;

}
}

if(clList != NULL)
{

clList->SetLastMessageTime(dreamSock_
GetCurrentSystemTime());

Tutorial 2 / Creating Your Network Library 285

// Check if the type is a positive number
// -> is the packet sequenced
if(type > 0)
{

unsigned short sequence = mes->ReadShort();
unsigned short sequenceAck = mes->ReadShort();

if(sequence <= clList->GetIncomingSequence())
{

LogString("LIB: Server: Sequence mismatch
(sequence: %ld <= incoming seq: %ld)",
sequence, clList->GetIncomingSequence());

}

clList->SetDroppedPackets(sequence –
clList->GetIncomingSequence() – 1);

clList->SetIncomingSequence(sequence);
clList->SetIncomingAcknowledged(sequenceAck);

}

// Wait for one message before setting state to connected
if(clList->GetConnectionState() == DREAMSOCK_CONNECTING)

clList->SetConnectionState(DREAMSOCK_CONNECTED);
}

}

// Parse through the system messages
switch(type)
{
case DREAMSOCK_MES_CONNECT:

AddClient(address, mes->ReadString());

LogString("LIBRARY: Server: a client connected successfully");
break;

case DREAMSOCK_MES_DISCONNECT:
if(clList == NULL)

break;
}

}
RemoveClient(clList);

LogString("LIBRARY: Server: a client disconnected");
break;

case DREAMSOCK_MES_PING:
clList->SetPing(dreamSock_GetCurrentSystemTime() –

clList->GetPingSent());
break;

int dreamServer::CheckForTimeout(char *data, struct sockaddr *from)
{

int currentTime = dreamSock_GetCurrentSystemTime();

286 Tutorial 2 / Creating Your Network Library

dreamClient *clList = clientList;
dreamClient *next;

for(; clList != NULL;)
{

next = clList->next;

// Don't timeout when connecting
if(clList->GetConnectionState() == DREAMSOCK_CONNECTING)
{

clList = next;
continue;

}

// Check if the client has been silent for 30 seconds
// If yes, assume crashed and remove the client
if(currentTime – clList->GetLastMessageTime() > 30000)
{

LogString("Client timeout, disconnecting (%d – %d = %d)",
currentTime, clList->GetLastMessageTime(),
currentTime – clList->GetLastMessageTime());

// Build a 'fake' message so the application will also
// receive notification of a client disconnecting
dreamMessage mes;
mes.Init(data, sizeof(data));
mes.WriteByte(DREAMSOCK_MES_DISCONNECT);

*(struct sockaddr *) from = *clList->GetSocketAddress();

RemoveClient(clList);

return mes.GetSize();
}

clList = next;
}

return 0;
}

int dreamServer::GetPacket(char *data, struct sockaddr *from)
{

// Check if the server is set up
if(!socket)

return 0;

// Check for timeout
int timeout = CheckForTimeout(data, from);

if(timeout)
return timeout;

Tutorial 2 / Creating Your Network Library 287

// Wait for a while or incoming data
int maxfd = socket;
fd_set allset;
struct timeval waittime;

waittime.tv_sec = 10 / 1000;
waittime.tv_usec = (10 % 1000) * 1000;

FD_ZERO(&allset);
FD_SET(socket, &allset);

fd_set reading = allset;

int nready = select(maxfd + 1, &reading, NULL, NULL, &waittime);

if(!nready)
return 0;

// Read data of the socket
int ret = 0;

dreamMessage mes;
mes.Init(data, sizeof(data));

ret = dreamSock_GetPacket(socket, mes.data, from);

if(ret <= 0)
return 0;

mes.SetSize(ret);

// Parse system messages
ParsePacket(&mes, from);

return ret;
}

void dreamServer::SendPackets(void)
{

// Check if the server is set up
if(!socket)

return;

dreamClient *clList = clientList;

for(; clList != NULL; clList = clList->next)
{

if(clList->message.GetSize() == 0)
continue;

clList->SendPacket();
}

}

288 Tutorial 2 / Creating Your Network Library

dreamServer Constructor

The dreamServer constructor makes everything ready for clients to
join the server.

dreamServer::dreamServer()
{

init = false;

port = 0;
runningIndex = 1;
socket = 0;
clientList = NULL;

}

dreamServer Destructor

The dreamServer destructor frees all the allocated memory, if any.

dreamServer::~dreamServer()
{

dreamClient *list = clientList;
dreamClient *next;

while(list != NULL)
{

next = list->next;

if(list)
{

free(list);
}

list = next;
}

clientList = NULL;

dreamSock_CloseSocket(socket);
}

The client list is parsed through and all the allocated memory is freed.
The server socket is also closed.

Note that before we free the memory of a client in the list, we must
store its “next” pointer to an external pointer, because the original is
lost once the memory is freed. Then we start it all over again.

next = list->next;

if(list)
{

free(list);

Tutorial 2 / Creating Your Network Library 289

}

list = next;

Initialize Function

This function initializes dreamServer by creating the socket so clients
start connecting to it.

int dreamServer::Initialize(char *localIP, int serverPort)
{

// Initialize dreamSock if it is not already initialized
dreamSock_Initialize();

// Store the server IP and port for later use
port = serverPort;

// Create server socket
socket = dreamSock_OpenUDPSocket(localIP, port);

if(socket == DREAMSOCK_INVALID_SOCKET)
{

return DREAMSOCK_SERVER_ERROR;
}

init = true;

return 0;
}

The function takes two parameters (char *localIP and int
serverPort). The first one defines the local IP address we want to
use. If this is NULL, the default is used. The latter parameter sets the
server port.

Uninitialize Function

Here we uninitialize dreamServer by closing the socket.

void dreamServer::Uninitialize(void)
{

dreamSock_CloseSocket(socket);

init = false;
}

SendAddClient Function

This function sends an “add client” message to each connected client
and a connection confirmation to the new client.

void dreamServer::SendAddClient(dreamClient *newClient)
{

290 Tutorial 2 / Creating Your Network Library

// Send connection confirmation
newClient->message.Init(newClient->message.outgoingData,

sizeof(newClient->message.outgoingData));

newClient->message.WriteByte(DREAMSOCK_MES_CONNECT); // type
newClient->SendPacket();

// Send 'Add client' message to every client
dreamClient *client = clientList;

// First inform the new client of the other clients
for(; client != NULL; client = client->next)
{

newClient->message.Init(newClient->message.outgoingData,
sizeof(newClient->message.outgoingData));

newClient->message.WriteByte(DREAMSOCK_MES_ADDCLIENT); // type

if(client == newClient)
{

newClient->message.WriteByte(1); // local client
newClient->message.WriteByte(client->GetIndex());
newClient->message.WriteString(client->GetName());

}
else
{

newClient->message.WriteByte(0); // not local client
newClient->message.WriteByte(client->GetIndex());
newClient->message.WriteString(client->GetName());

}

newClient->SendPacket();
}

// Then tell the others about the new client
for(client = clientList; client != NULL; client = client->next)
{

if(client == newClient)
continue;

client->message.Init(client->message.outgoingData,
sizeof(client->message.outgoingData));

client->message.WriteByte(DREAMSOCK_MES_ADDCLIENT); // type

client->message.WriteByte(0);
client->message.WriteByte(newClient->GetIndex());
client->message.WriteString(newClient->GetName());

client->SendPacket();
}

}

Tutorial 2 / Creating Your Network Library 291

This function takes one parameter (dreamClient *newClient).
This is a pointer to the client that connected the server and triggered
this function to be run.

First we send a connect confirmation to the new client:

newClient->message.Init(newClient->message.outgoingData,
sizeof(newClient->message.outgoingData));

newClient->message.WriteByte(DREAMSOCK_MES_CONNECT); // type
newClient->SendPacket();

Then we send an “add client” message to all the connected clients
(including the new client). This tells the clients to add a client to the
game. With this message we tell the clients their index numbers and
send a local client flag. This means that the new client knows to assign
a local client pointer to its own client list.

if(client == newClient)
{

newClient->message.WriteByte(1); // local client
newClient->message.WriteByte(client->GetIndex());
newClient->message.WriteString(client->GetName());

}
else
{

newClient->message.WriteByte(0); // not local client
newClient->message.WriteByte(client->GetIndex());
newClient->message.WriteString(client->GetName());

}

SendRemoveClient Function

Here we send a “remove client” message to each client.

void dreamServer::SendRemoveClient(dreamClient *client)
{

int index = client->GetIndex();

// Send 'Remove client' message to every client
dreamClient *list = clientList;

for(; list != NULL; list = list->next)
{

list->message.Init(list->message.outgoingData,
sizeof(list->message.outgoingData));

list->message.WriteByte(DREAMSOCK_MES_REMOVECLIENT); // type
list->message.WriteByte(index); // index

}

SendPackets();

// Send disconnection confirmation

292 Tutorial 2 / Creating Your Network Library

client->message.Init(client->message.outgoingData,
sizeof(client->message.outgoingData));

client->message.WriteByte(DREAMSOCK_MES_DISCONNECT);
client->SendPacket();

}

This function takes one parameter (dreamClient *client), which
is a pointer to the client to remove. First we tell all the clients to
remove the client and then we send the disconnecting client a confir-
mation of disconnection.

SendPing Function

This function pings the clients to calculate the network latency.

void dreamServer::SendPing(void)
{

// Send ping message to every client
dreamClient *list = clientList;

for(; list != NULL; list = list->next)
{

list->SendPing();
}

}

What this function actually does is call the SendPing function of each
client. The server then sends the ping message to each client.

AddClient Function

This function adds a client to the server’s client list. The function is
run when a client connects to the server.

void dreamServer::AddClient(struct sockaddr *address, char *name)
{

// First get a pointer to the beginning of client list
dreamClient *list = clientList;
dreamClient *prev;
dreamClient *newClient;

LogString("LIB: Adding client, index %d", runningIndex);

// No clients yet, adding the first one
if(clientList == NULL)
{

LogString("LIB: Server: Adding first client");

clientList = (dreamClient *) calloc(1, sizeof(dreamClient));

clientList->SetSocket(socket);
clientList->SetSocketAddress(address);

Tutorial 2 / Creating Your Network Library 293

clientList->SetConnectionState(DREAMSOCK_CONNECTING);
clientList->SetOutgoingSequence(1);
clientList->SetIncomingSequence(0);
clientList->SetIncomingAcknowledged(0);
clientList->SetIndex(runningIndex);
clientList->SetName(name);
clientList->next = NULL;

newClient = clientList;
}
else
{

LogString("LIB: Server: Adding another client");

prev = list;
list = clientList->next;

while(list != NULL)
{

prev = list;
list = list->next;

}

list = (dreamClient *) calloc(1, sizeof(dreamClient));

list->SetSocket(socket);
list->SetSocketAddress(address);

list->SetConnectionState(DREAMSOCK_CONNECTING);
list->SetOutgoingSequence(1);
list->SetIncomingSequence(0);
list->SetIncomingAcknowledged(0);
list->SetIndex(runningIndex);
list->SetName(name);
list->next = NULL;

prev->next = list;

newClient = list;
}

runningIndex++;

SendAddClient(newClient);
}

The function takes two parameters (struct sockaddr *address

and char *name). The first one is the socket address of the new cli-
ent, and the second one is the client’s name. This information is then
added to the client’s own structure. After the server has added the
information to its own list, it sends the “add client” message to all the
connected clients.

294 Tutorial 2 / Creating Your Network Library

The function checks if the client list is empty; if it is, it creates the
first entry for it. All the same information is stored for each client. The
following piece of code shows the first entry being added.

// No clients yet, adding the first one
if(clientList == NULL)
{

LogString("LIB: Server: Adding first client");

clientList = (dreamClient *) calloc(1, sizeof(dreamClient));

clientList->SetSocket(socket);
clientList->SetSocketAddress(address);

clientList->SetConnectionState(DREAMSOCK_CONNECTING);
clientList->SetOutgoingSequence(1);
clientList->SetIncomingSequence(0);
clientList->SetIncomingAcknowledged(0);
clientList->SetIndex(runningIndex);
clientList->SetName(name);
clientList->next = NULL;

newClient = clientList;
}

RemoveClient Function

This function removes a client from the client list.

void dreamServer::RemoveClient(dreamClient *client)
{

dreamClient *list = NULL;
dreamClient *prev = NULL;
dreamClient *next = NULL;

int index = client->GetIndex();

LogString("LIB: Removing client with index %d", index);

SendRemoveClient(client);

for(list = clientList; list != NULL; list = list->next)
{

if(client == list)
{

if(prev != NULL)
{

prev->next = client->next;
}

break;
}

prev = list;

Tutorial 2 / Creating Your Network Library 295

}

if(client == clientList)
{

LogString("LIB: Server: removing first client in list");

if(list) next = list->next;

if(client) free(client);
client = NULL;
clientList = next;

}
else
{

LogString("LIB: Server: removing a client");

if(list) next = list->next;

if(client) free(client);
client = next;

}
}

The function takes one parameter (dreamClient *client). This is
a pointer to the client to remove. The server first sends each client a
message to remove the client and then removes the client itself. We
must update the client list so that the previous client’s “next” pointer
does not point to the removed client anymore. We want it to point to
the next client in the list.

for(list = clientList; list != NULL; list = list->next)
{

if(client == list)
{

if(prev != NULL)
{

prev->next = client->next;
}

break;
}

prev = list;
}

We also need to make sure that if the first entry on the list is removed,
the next one in the list becomes the new first entry.

if(client == clientList)
{

LogString("LIB: Server: removing first client in list");

if(list) next = list->next;

296 Tutorial 2 / Creating Your Network Library

if(client) free(client);
client = NULL;
clientList = next;

}
else
{

LogString("LIB: Server: removing a client");

if(list) next = list->next;

if(client) free(client);
client = next;

}

ParsePacket Function

This function parses the server’s system messages and handles
sequenced messages.

void dreamServer::ParsePacket(dreamMessage *mes, struct sockaddr *address)
{

mes->BeginReading();
int type = mes->ReadByte();

// Find the correct client by comparing addresses
dreamClient *clList = clientList;

// If we do not have clients yet, skip to message type checking
if(clList != NULL)
{

for(; clList != NULL; clList = clList->next)
{

if(memcmp(clList->GetSocketAddress(), address,
sizeof(address)) == 0)

{
break;

}
}

if(clList != NULL)
{

clList->SetLastMessageTime(dreamSock_
GetCurrentSystemTime());

// Check if the type is a positive number
// -> is the packet sequenced
if(type > 0)
{

unsigned short sequence = mes->ReadShort();
unsigned short sequenceAck = mes->ReadShort();

if(sequence <= clList->GetIncomingSequence())
{

Tutorial 2 / Creating Your Network Library 297

LogString("LIB: Server: Sequence mismatch
(sequence: %ld <= incoming seq: %ld)",
sequence, clList->GetIncomingSequence());

}

clList->SetDroppedPackets(sequence –
clList->GetIncomingSequence() – 1);

clList->SetIncomingSequence(sequence);
clList->SetIncomingAcknowledged(sequenceAck);

}

// Wait for one message before setting state to connected
if(clList->GetConnectionState() == DREAMSOCK_CONNECTING)

clList->SetConnectionState(DREAMSOCK_CONNECTED);
}

}

// Parse through the system messages
switch(type)
{
case DREAMSOCK_MES_CONNECT:

AddClient(address, mes->ReadString());

LogString("LIBRARY: Server: a client connected successfully");
break;

case DREAMSOCK_MES_DISCONNECT:
if(clList == NULL)

break;

RemoveClient(clList);

LogString("LIBRARY: Server: a client disconnected");
break;

case DREAMSOCK_MES_PING:
clList->SetPing(dreamSock_GetCurrentSystemTime() –

clList->GetPingSent());
break;

}
}

The function takes two parameters (dreamMessage *mes and
struct sockaddr *address). The first one is a pointer to the
message to parse. The second one is the socket address of the client
from which we got the message. We compare this address to the ones
in the client list, and if it matches one there, the message is from an old
client. If it does not find a match, the client is new. Note that we just
break the search loop if we find a match, and then we use the last
pointer as our client pointer.

298 Tutorial 2 / Creating Your Network Library

for(; clList != NULL; clList = clList->next)
{

if(memcmp(clList->GetSocketAddress(), address, sizeof(address)) == 0)
{

break;
}

}

The sequences are processed just like on the client side. We also con-
trol the connection state of a client here. When a client connects, its
connection state is set to “connecting.” When we get a message from
this client again, we set the connection state to “connected.” So we
wait for one message from the client before we give it a “connected”
state. This is to make sure we do not time out the client before it has
even had time to connect properly.

// Wait for one message before setting state to connected
if(clList->GetConnectionState() == DREAMSOCK_CONNECTING)

clList->SetConnectionState(DREAMSOCK_CONNECTED);

Finally, we parse the system messages. The ping value is calculated by
subtracting the “ping sent” time from the current time.

// Parse through the system messages
switch(type)
{
case DREAMSOCK_MES_CONNECT:

AddClient(address, mes->ReadString());

LogString("LIBRARY: Server: a client connected successfully");
break;

case DREAMSOCK_MES_DISCONNECT:
if(clList == NULL)

break;

RemoveClient(clList);

LogString("LIBRARY: Server: a client disconnected");
break;

case DREAMSOCK_MES_PING:
clList->SetPing(dreamSock_GetCurrentSystemTime() –

clList->GetPingSent());
break;

}

CheckForTimeout Function

Here we check if a client times out. This means that the server has not
received any message from the client in a certain amount of time.

int dreamServer::CheckForTimeout(char *data, struct sockaddr *from)
{

Tutorial 2 / Creating Your Network Library 299

int currentTime = dreamSock_GetCurrentSystemTime();

dreamClient *clList = clientList;
dreamClient *next;

for(; clList != NULL;)
{

next = clList->next;

// Don't timeout when connecting
if(clList->GetConnectionState() == DREAMSOCK_CONNECTING)
{

clList = next;
continue;

}

// Check if the client has been silent for 30 seconds
// If yes, assume crashed and remove the client
if(currentTime – clList->GetLastMessageTime() > 30000)
{

LogString("Client timeout, disconnecting (%d – %d = %d)",
currentTime, clList->GetLastMessageTime(),
currentTime – clList->GetLastMessageTime());

// Build a 'fake' message so the application will also
// receive notification of a client disconnecting
dreamMessage mes;
mes.Init(data, sizeof(data));
mes.WriteByte(DREAMSOCK_MES_DISCONNECT);

*(struct sockaddr *) from = *clList->GetSocketAddress();

RemoveClient(clList);

return mes.GetSize();
}

clList = next;
}

return 0;
}

This function takes two parameters (char *data and struct
sockaddr *from). These parameters are used to create a “fake”
message to tell everybody a client timed out. Actually, all they will
know is that the client disconnected, because this fake message makes
the server believe it got a “disconnect” message from the client that
timed out.

We should not time out while the client is connecting.

// Don't timeout when connecting
if(clList->GetConnectionState() == DREAMSOCK_CONNECTING)

300 Tutorial 2 / Creating Your Network Library

{
clList = next;
continue;

}

Here we check if the client has been silent for 30 seconds; if it has, we
create the fake message to make the server remove the client.

// Check if the client has been silent for 30 seconds
// If yes, assume crashed and remove the client
if(currentTime – clList->GetLastMessageTime() > 30000)
{

LogString("Client timeout, disconnecting (%d – %d = %d)",
currentTime, clList->GetLastMessageTime(), currentTime –
clList->GetLastMessageTime());

// Build a 'fake' message so the application will also
// receive notification of a client disconnecting
dreamMessage mes;
mes.Init(data, sizeof(data));
mes.WriteByte(DREAMSOCK_MES_DISCONNECT);

*(struct sockaddr *) from = *clList->GetSocketAddress();

RemoveClient(clList);

return mes.GetSize();
}

GetPacket Function

This function receives packets from the clients.

int dreamServer::GetPacket(char *data, struct sockaddr *from)
{

// Check if the server is set up
if(!socket)

return 0;

// Check for timeout
int timeout = CheckForTimeout(data, from);

if(timeout)
return timeout;

// Wait for a while or incoming data
int maxfd = socket;
fd_set allset;
struct timeval waittime;

waittime.tv_sec = 10 / 1000;
waittime.tv_usec = (10 % 1000) * 1000;

FD_ZERO(&allset);

Tutorial 2 / Creating Your Network Library 301

FD_SET(socket, &allset);

fd_set reading = allset;

int nready = select(maxfd + 1, &reading, NULL, NULL, &waittime);

if(!nready)
return 0;

// Read data of the socket
int ret = 0;

dreamMessage mes;
mes.Init(data, sizeof(data));

ret = dreamSock_GetPacket(socket, mes.data, from);

if(ret <= 0)
return 0;

mes.SetSize(ret);

// Parse system messages
ParsePacket(&mes, from);

return ret;
}

The function takes two parameters (char *data and struct
sockaddr *from). The first one is a pointer to the incoming data
buffer, which holds the actual data that comes from the client. The sec-
ond one is the socket address of the client from which we got the data.

First we check for timeouts, and then we start to listen to the
server’s socket. We use the select function to save processor time
by waiting for incoming data. If no data is received in 10 milliseconds,
the function returns. If we did not do this, the server would consume
all the processor time, and the server machine could not run anything
else efficiently.

// Wait for a while or incoming data
int maxfd = socket;
fd_set allset;
struct timeval waittime;

waittime.tv_sec = 10 / 1000;
waittime.tv_usec = (10 % 1000) * 1000;

FD_ZERO(&allset);
FD_SET(socket, &allset);

fd_set reading = allset;

302 Tutorial 2 / Creating Your Network Library

int nready = select(maxfd + 1, &reading, NULL, NULL, &waittime);

if(!nready)
return 0;

After that we read the socket’s data and parse for system messages.

// Read data of the socket
int ret = 0;

dreamMessage mes;
mes.Init(data, sizeof(data));

ret = dreamSock_GetPacket(socket, mes.data, from);

if(ret <= 0)
return 0;

mes.SetSize(ret);

// Parse system messages
ParsePacket(&mes, from);

return ret;

SendPackets Function

This function sends the internal messages of all the clients in the client
list. The server should write the messages into these internal mes-
sages inside dreamClient and then send them all at once with this
function.

void dreamServer::SendPackets(void)
{

// Check if the server is set up
if(!socket)

return;

dreamClient *clList = clientList;

for(; clList != NULL; clList = clList->next)
{

if(clList->message.GetSize() == 0)
continue;

clList->SendPacket();
}

}

This function goes through all of the clients in the server’s client list
and sends off all of their internal messages by using dreamClient’s
SendPacket function.

Tutorial 2 / Creating Your Network Library 303

dreamServer Summary

We have now created dreamServer, which processes all the clients on
the server side, and we know how to send to clients and how to receive
messages from them.

Summary

That concludes our network library tutorial. We created the dream-
Message class to build and read network messages, the dreamClient
class to handle client-side and server-side network connections, and
the dreamServer class to handle the clients on the server side.

We now have a fully working library ready, and we can start writing
our multiplayer game.

304 Tutorial 2 / Creating Your Network Library

Tutorial 3

Creating a Basic
Network
Application with
dreamSock

Introduction

In this tutorial we learn how to create a basic network application using
dreamSock. This application will be the sign-in part of our tutorial
game. We do not talk about the actual sign-in process that happens with
MySQL but instead learn how to create a server application and a client
application that work together over a network. We have our network
library dreamSock ready, so we will be using that for the network
communications.

305

Planning the Functionality

We are now going to create a basic dreamSock network application in
the form of the sign-in server of our tutorial game. The final game will
have three such applications: sign-in, lobby, and the game itself. So
when the game is ready, the server will actually be running more than
one service. Sign-in and lobby services are running all the time, and the
game services are run when needed (when games are created).

All these parts of the application work exactly the same way; only
the messages are different.

On both the server and client we have a loop that reads the socket
every frame. Messages are sent as needed.

Catching Exceptions

Catching exceptions from the loops we run is a very, very good idea,
especially on the server. Imagine a client connecting to the server and
then somehow crashing and “confusing” the server code (hopefully our
code is good enough not to do that though). It is possible that the
server does something that it should not do, such as trying to use some
unallocated memory. Without catching exceptions, the server would
crash completely, leaving the clients hanging. But if we use try and
catch statements to catch this unplanned exception, the server code
will ignore the malfunction and move on. The parts of the code that
depended on what the server was trying to do will also fail, but the
server will keep running and serving all the other clients. Also, when a
client catches an exception, it can safely disconnect from the server
before it is shut down.

Creating a Basic Client Application

We will now create a basic client application, which is a normal Win-
dows dialog-based program. We have the dialogs ready, so all we need
to do now is link our network library with the program we are creating.

To do this, select Project, Settings from the main Visual Studio
menu. Then select the Link tab in the dialog that appears in the middle
of the screen. Ensure that the top-left drop-down box is set to All Con-
figurations, then add the following library before or after the other
libraries in the Object/library modules edit box:

dreamSock.lib

306 Tutorial 3 / Creating a Basic Network Application with dreamSock

When you enter these libraries, the dialog should look like Figure 1.

Once this is done, we can make new source code files called main.cpp,
signin.cpp, main.h, common.h, network.h, and signin.h. We will write
our client code into these files.

signin.h File

It is a good idea to start with header files, because that is where our
data structures are, and we need those before we can do anything with
the application. So let’s take a look at the signin.h file that contains
class CSignin.

#ifndef __SIGNIN_H__
#define __SIGNIN_H__

#include "network.h"
#include "main.h"

#define SIGNIN_RESULT_ACCEPTED 200
#define SIGNIN_RESULT_USERNAMEBAD 201
#define SIGNIN_RESULT_PASSWORDBAD 202
#define SIGNIN_RESULT_MYSQLERROR 203

class CSignin
{
private:

dreamClient *networkClient;
clientLoginData *clientList;
clientLoginData *localClient; // Pointer to the local client

// in the client list

public:
CSignin();

Tutorial 3 / Creating a Basic Network Application with dreamSock 307

Figure 1

dreamClient *GetNetworkClient(void) {return networkClient;}
clientLoginData *GetLocalClient(void) {return localClient;}

void ReadPackets(void);

void AddClient(int local, int index, char *name);
void RemoveClient(int index);
void RemoveClients(void);

void SendSignIn(char *nickname, char *firstname, char *surname,
int age, char *gender, char *password, char *email);

void SendKeepAlive(void);

void Connect(char *name);
void Disconnect(void);

void RunNetwork(int msec);
};

extern CSignin Signin;

#endif

CSignin Class

Every dreamSock network application should have a class similar to
this one (or many such classes as you learn in the other tutorials). This
is the network client’s base class, because it holds the dreamClient
object and other members that are closely connected to networking.
We look at these members later in this tutorial.

class CSignin
{
private:

dreamClient *networkClient;
clientLoginData *clientList;
clientLoginData *localClient; // Pointer to the local client

// in the client list

public:
CSignin();

dreamClient *GetNetworkClient(void) {return networkClient;}
clientLoginData *GetLocalClient(void) {return localClient;}

void ReadPackets(void);

void AddClient(int local, int index, char *name);
void RemoveClient(int index);
void RemoveClients(void);

308 Tutorial 3 / Creating a Basic Network Application with dreamSock

void SendSignIn(char *nickname, char *firstname, char *surname,
int age, char *gender, char *password, char *email);

void SendKeepAlive(void);

void Connect(char *name);
void Disconnect(void);

void RunNetwork(int msec);
};

network.h File

This header file holds some common data structures and definitions
that are used throughout the application. The importance of this file
grows in the later tutorials, as more message types are created. net-
work.h holds the clientLoginData structure that is used to store each
client’s data. As you have probably noticed, the CSignin class has a
linked list of this data type.

#ifndef NETWORK_H
#define NETWORK_H

#define USER_MES_SERVEREXIT 1
#define USER_MES_SIGNIN 2
#define USER_MES_KEEPALIVE 3

typedef struct clientLoginData
{

int index;
char nickname[30];
clientLoginData *next;

} clientLoginData;

#endif

main.h File

This is the main header and contains only some externs (one for now).

#ifndef __TUTMAIN_H__
#define __TUTMAIN_H__

extern HWND hWnd_LoginDialog;

#endif

Tutorial 3 / Creating a Basic Network Application with dreamSock 309

common.h File

The common.h file is used to include the header files all at once. This
makes things simpler, as all you need to do is include one header file.

#ifndef __COMMON_H__
#define __COMMON_H__

#include "dreamSock.h"

#include "network.h"
#include "signin.h"
#include "main.h"

#endif

main.cpp File

Here is the main application source file:

/**/
/* Programming Multiplayer Games */
/* Tutorial game client */
/* Programming: */
/* Teijo Hakala */
/**/

#include "common.h"
#include "resource.h"

// Some global stuff
CSignin Signin;

char serverIP[32];

HINSTANCE hInst;
HWND hWnd_Application;
HWND hWnd_CreateAccountDialog;
HWND hWnd_LoginDialog;

//---
// Name: empty()
// Desc:
//---
LRESULT CALLBACK ApplicationProc(HWND hWnd, UINT uMsg, WPARAM wParam,

LPARAM lParam)
{

switch (uMsg)
{

case WM_CLOSE:
{

PostQuitMessage(0);

310 Tutorial 3 / Creating a Basic Network Application with dreamSock

break;
}

default:
break;

}

// Pass all unhandled messages to DefWindowProc
return DefWindowProc(hWnd,uMsg,wParam,lParam);

}

//---
// Name: empty()
// Desc:
//---
LRESULT CALLBACK CreateAccountDialogProc(HWND hWnd, UINT uMsg, WPARAM wParam,

LPARAM lParam)
{

char nickname[30];
char firstname[50];
char surname[50];
int age;
char gender[10];
char password[50];
char password2[50];
char email[150];

int ret;

switch (uMsg)
{

case WM_COMMAND:
{

switch(LOWORD(wParam))
{

case IDC_CREATEACCOUNT_CANCEL:
DestroyWindow(hWnd_CreateAccountDialog);
hWnd_CreateAccountDialog = NULL;
break;

case IDC_CREATEACCOUNT_CONTINUE:

// -> First get the IP address of the server
// from the dialog
GetDlgItemText(hWnd_CreateAccountDialog,

IDC_CREATEACCOUNT_IPADDRESS, serverIP, 20);

// -> Store the player data in local variables
GetDlgItemText(hWnd_CreateAccountDialog,

IDC_CREATEACCOUNT_NICKNAME, nickname, 30);
GetDlgItemText(hWnd_CreateAccountDialog,

IDC_CREATEACCOUNT_FIRSTNAME, firstname, 50);
GetDlgItemText(hWnd_CreateAccountDialog,

IDC_CREATEACCOUNT_SURNAME, surname, 50);

Tutorial 3 / Creating a Basic Network Application with dreamSock 311

age = GetDlgItemInt(hWnd_CreateAccountDialog,
IDC_CREATEACCOUNT_AGE, NULL, FALSE);

GetDlgItemText(hWnd_CreateAccountDialog,
IDC_CREATEACCOUNT_GENDER, gender, 10);

GetDlgItemText(hWnd_CreateAccountDialog,
IDC_CREATEACCOUNT_PASSWORD1, password, 50);

GetDlgItemText(hWnd_CreateAccountDialog,
IDC_CREATEACCOUNT_PASSWORD2, password2, 50);

GetDlgItemText(hWnd_CreateAccountDialog,
IDC_CREATEACCOUNT_EMAIL, email, 150);

// -> Check that all fields have been filled in
if(!strcmp(nickname,"") || !strcmp

(firstname,"") || !strcmp(surname,"") ||
!strcmp(gender,"") || !strcmp(password,"")
|| !strcmp(email,"") || age < 1)

{
MessageBox(hWnd_CreateAccountDialog,

"Not all fields have been filled
in!\n\nPlease check and try
again...", "Information Error",
MB_OK);

break;
}

// -> Check to see if passwords match
if(strcmp(password,password2))
{

MessageBox(hWnd_CreateAccountDialog,
"The two passwords you entered do
not match!\n\nPlease check and
try again...", "Password Error",
MB_OK);

break;
}

ret = Signin.GetNetworkClient()->Initialize
("", serverIP, 30002);

if(ret == DREAMSOCK_CLIENT_ERROR)
{

char text[64];
sprintf(text, "Could not open client

socket");

MessageBox(NULL, text, "Error", MB_OK);
}

Signin.Connect(nickname);

DestroyWindow(hWnd_CreateAccountDialog);
hWnd_CreateAccountDialog = NULL;

312 Tutorial 3 / Creating a Basic Network Application with dreamSock

Signin.SendSignIn(nickname, firstname, surname,
age, gender, password, email);

break;
default:

break;
}
return 0;

}
case WM_CLOSE:

break;

case WM_DESTROY:
break;

}

return 0;
}

//---
// Name: empty()
// Desc:
//---
LRESULT CALLBACK LoginDialogProc(HWND hWnd, UINT uMsg, WPARAM wParam,

LPARAM lParam)
{

switch (uMsg)
{

case WM_COMMAND:
{

switch(LOWORD(wParam))
{

case IDC_LOGIN_QUIT:
PostQuitMessage(0);
break;

case IDC_LOGIN_CREATEACCOUNT:
if(!hWnd_CreateAccountDialog)
{

hWnd_CreateAccountDialog =
CreateDialog(hInst, MAKEINTRESOURCE
(IDD_CREATEACCOUNT),
hWnd_Application, (DLGPROC)
CreateAccountDialogProc);

}
break;

case IDC_DOLOGIN:
break;

default:
break;

}
return 0;

Tutorial 3 / Creating a Basic Network Application with dreamSock 313

}
case WM_CLOSE:
{

PostQuitMessage(0);
break;

}
}

return 0;
}

//---
// Name: empty()
// Desc:
//---
int PASCAL WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

TCHAR *pCmdLine, int nCmdShow)
{

int time, oldTime, newTime;

WNDCLASSEX wcl;

// Create our main window
wcl.cbSize = sizeof(WNDCLASSEX);

wcl.hInstance = hInstance;
wcl.lpszClassName = "ArmyWar";
wcl.lpfnWndProc = ApplicationProc;
wcl.style = 0;

wcl.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wcl.hIconSm = LoadIcon(NULL, IDI_WINLOGO);
wcl.hCursor = LoadCursor(NULL, IDC_ARROW);

wcl.lpszMenuName = NULL;
wcl.cbClsExtra = 0;
wcl.cbWndExtra = 0;

wcl.hbrBackground = (HBRUSH) GetStockObject(LTGRAY_BRUSH);

if(!RegisterClassEx(&wcl)) return 0;

hWnd_Application = CreateWindow(
"ArmyWar",
"ARMY WAR Online 2.0",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
640,
480,
HWND_DESKTOP,
NULL,
hInstance,
NULL

314 Tutorial 3 / Creating a Basic Network Application with dreamSock

);

// Initialize the network library
if(dreamSock_Initialize() != 0)
{

MessageBox(NULL, "Error initializing Communication Library!",
"Fatal Error", MB_OK);

return 1;
}

ShowWindow(hWnd_Application, nCmdShow);
UpdateWindow(hWnd_Application);

// Set global instance variable
hInst = hInstance;

// Display the LoginDialog
hWnd_LoginDialog = CreateDialog(hInst, MAKEINTRESOURCE(IDD_LOGINDIALOG),

hWnd_Application, (DLGPROC)LoginDialogProc);

MSG msg;
BOOL bMsg = FALSE;

PeekMessage(&msg, NULL, 0, 0, PM_NOREMOVE);

oldTime = dreamSock_GetCurrentSystemTime();

bool done = false;

try
{

while(!done)
{

while(PeekMessage(&msg, NULL, 0, 0, PM_NOREMOVE))
{

if(!GetMessage(&msg, NULL, 0, 0))
{

Signin.Disconnect();
done = true;

}

TranslateMessage(&msg);
DispatchMessage(&msg);

}

do
{

newTime = dreamSock_GetCurrentSystemTime();
time = newTime – oldTime;

} while (time < 1);

// Run sign-in network

Tutorial 3 / Creating a Basic Network Application with dreamSock 315

Signin.RunNetwork(time);

oldTime = newTime;
}

}
catch(...)
{

Signin.Disconnect();

LogString("Unknown Exception caught in main loop");

MessageBox(NULL, "Unknown Exception caught in main loop",
"Error", MB_OK | MB_TASKMODAL);

return –1;
}

return msg.wParam;
}

Global Variables

There are some global variables that we need to create also. Global
variables should generally be avoided, but sometimes they make life
simpler!

// Some global stuff
CSignin Signin;

char serverIP[32];

HINSTANCE hInst;
HWND hWnd_Application;
HWND hWnd_CreateAccountDialog;
HWND hWnd_LoginDialog;

The CSignin Signin is an object that we use for the client’s network
part. The char serverIP holds the server’s IP address string once it
is entered in the main login window. The other global variables are
required for dialogs and such.

CreateAccountDialogProc Function

This is a dialog procedure function for creating a new account. It checks
that the required information has been entered and connects the sign-in
server.

LRESULT CALLBACK CreateAccountDialogProc(HWND hWnd, UINT uMsg, WPARAM wParam,
LPARAM lParam)

{
char nickname[30];

316 Tutorial 3 / Creating a Basic Network Application with dreamSock

char firstname[50];
char surname[50];
int age;
char gender[10];
char password[50];
char password2[50];
char email[150];

int ret;

switch (uMsg)
{

case WM_COMMAND:
{

switch(LOWORD(wParam))
{

case IDC_CREATEACCOUNT_CANCEL:
DestroyWindow(hWnd_CreateAccountDialog);
hWnd_CreateAccountDialog = NULL;
break;

case IDC_CREATEACCOUNT_CONTINUE:

// -> First get the IP address of the server
// from the dialog
GetDlgItemText(hWnd_CreateAccountDialog,
IDC_CREATEACCOUNT_IPADDRESS, serverIP, 20);

// -> Store the player data in local variables
GetDlgItemText(hWnd_CreateAccountDialog,
IDC_CREATEACCOUNT_NICKNAME, nickname, 30);

GetDlgItemText(hWnd_CreateAccountDialog,
IDC_CREATEACCOUNT_FIRSTNAME, firstname, 50);

GetDlgItemText(hWnd_CreateAccountDialog,
IDC_CREATEACCOUNT_SURNAME, surname, 50);

age = GetDlgItemInt(hWnd_CreateAccountDialog,
IDC_CREATEACCOUNT_AGE, NULL, FALSE);

GetDlgItemText(hWnd_CreateAccountDialog,
IDC_CREATEACCOUNT_GENDER, gender, 10);

GetDlgItemText(hWnd_CreateAccountDialog,
IDC_CREATEACCOUNT_PASSWORD1, password, 50);

GetDlgItemText(hWnd_CreateAccountDialog,
IDC_CREATEACCOUNT_PASSWORD2, password2, 50);

GetDlgItemText(hWnd_CreateAccountDialog,
IDC_CREATEACCOUNT_EMAIL, email, 150);

// -> Check that all fields have been filled in
if(!strcmp(nickname,"") ||
!strcmp(firstname,"") || !strcmp(surname,"")
|| !strcmp(gender,"") || !strcmp(password,"")
|| !strcmp(email,"") || age < 1)

{
MessageBox(hWnd_CreateAccountDialog,

"Not all fields have been filled

Tutorial 3 / Creating a Basic Network Application with dreamSock 317

in!\n\nPlease check and try
again...", "Information Error",
MB_OK);

break;
}

// -> Check to see if passwords match
if(strcmp(password,password2))
{

MessageBox(hWnd_CreateAccountDialog,
"The two passwords you entered do
not match!\n\nPlease check and
try again...", "Password Error",
MB_OK);

break;
}

ret = Signin.GetNetworkClient()->Initialize("",
serverIP, 30002);

if(ret == DREAMSOCK_CLIENT_ERROR)
{

char text[64];
sprintf(text, "Could not open client

socket");

MessageBox(NULL, text, "Error", MB_OK);
}

Signin.Connect(nickname);

DestroyWindow(hWnd_CreateAccountDialog);
hWnd_CreateAccountDialog = NULL;

Signin.SendSignIn(nickname, firstname, surname,
age, gender, password, email);

break;
default:

break;
}
return 0;

}
case WM_CLOSE:

break;

case WM_DESTROY:
break;

}

return 0;
}

318 Tutorial 3 / Creating a Basic Network Application with dreamSock

Here we see how to connect the server. As you can see, we use the
CSignin class object Signin. First we initialize our network client with
dreamClient’s Initialize function. We want to use the default local
IP and the server IP we entered in the text box. The sign-in server
uses UDP port 30002. If everything went fine, we connect to the
server and send our sign-in information. The functions we use here will
be introduced later in this tutorial.

ret = Signin.GetNetworkClient()->Initialize("", serverIP, 30002);

if(ret == DREAMSOCK_CLIENT_ERROR)
{

char text[64];
sprintf(text, "Could not open client socket");

MessageBox(NULL, text, "Error", MB_OK);
}

Signin.Connect(nickname);

DestroyWindow(hWnd_CreateAccountDialog);
hWnd_CreateAccountDialog = NULL;

Signin.SendSignIn(nickname, firstname, surname, age, gender, password, email);

WinMain Function

The second function with new code here is the WinMain function. As
you know, this is the first function that runs in a Windows environment,
so we put our initialization code here (among other things).

int PASCAL WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
TCHAR *pCmdLine, int nCmdShow)

{
int time, oldTime, newTime;

WNDCLASSEX wcl;

// Create our main window
wcl.cbSize = sizeof(WNDCLASSEX);

wcl.hInstance = hInstance;
wcl.lpszClassName = "ArmyWar";
wcl.lpfnWndProc = ApplicationProc;
wcl.style = 0;

wcl.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wcl.hIconSm = LoadIcon(NULL, IDI_WINLOGO);
wcl.hCursor = LoadCursor(NULL, IDC_ARROW);

wcl.lpszMenuName = NULL;
wcl.cbClsExtra = 0;

Tutorial 3 / Creating a Basic Network Application with dreamSock 319

wcl.cbWndExtra = 0;

wcl.hbrBackground = (HBRUSH) GetStockObject(LTGRAY_BRUSH);

if(!RegisterClassEx(&wcl)) return 0;

hWnd_Application = CreateWindow(
"ArmyWar",
"ARMY WAR Online 2.0",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
640,
480,
HWND_DESKTOP,
NULL,
hInstance,
NULL
);

// Initialize the network library
if(dreamSock_Initialize() != 0)
{

MessageBox(NULL, "Error initializing Communication Library!",
"Fatal Error", MB_OK);

return 1;
}

ShowWindow(hWnd_Application, nCmdShow);
UpdateWindow(hWnd_Application);

// Set global instance variable
hInst = hInstance;

// Display the LoginDialog
hWnd_LoginDialog = CreateDialog(hInst, MAKEINTRESOURCE(IDD_LOGINDIALOG),

hWnd_Application, (DLGPROC)LoginDialogProc);

MSG msg;
BOOL bMsg = FALSE;

PeekMessage(&msg, NULL, 0, 0, PM_NOREMOVE);

oldTime = dreamSock_GetCurrentSystemTime();

bool done = false;

try
{

while(!done)
{

while(PeekMessage(&msg, NULL, 0, 0, PM_NOREMOVE))
{

320 Tutorial 3 / Creating a Basic Network Application with dreamSock

if(!GetMessage(&msg, NULL, 0, 0))
{

Signin.Disconnect();
done = true;

}

TranslateMessage(&msg);
DispatchMessage(&msg);

}

do
{

newTime = dreamSock_GetCurrentSystemTime();
time = newTime – oldTime;

} while (time < 1);

// Run sign-in network
Signin.RunNetwork(time);

oldTime = newTime;
}

}
catch(...)
{

Signin.Disconnect();

LogString("Unknown Exception caught in main loop");

MessageBox(NULL, "Unknown Exception caught in main loop",
"Error", MB_OK | MB_TASKMODAL);

return –1;
}

return msg.wParam;
}

The main window here is created the same way it is in the next tuto-
rial. Because it is shown there, we skip it here. Initializing dreamSock
interests us more, and it is done as follows. All we do is call the
dreamSock_Initialize function and see if it succeeded or not. If
it returns non-zero, the function failed to initialize dreamSock for some
reason.

// Initialize the network library
if(dreamSock_Initialize() != 0)
{

MessageBox(NULL, "Error initializing Communication Library!",
"Fatal Error", MB_OK);

return 1;
}

Tutorial 3 / Creating a Basic Network Application with dreamSock 321

The next thing that interests us is the main application loop. We use try
and catch statements to try to catch some undesired exceptions. If it
does catch something, the client tries to disconnect from the server.

The main loop calculates each frame’s time in milliseconds. This is
done by first getting the current time when the loop ends, and then tak-
ing the current time during the loop and subtracting it from the old loop
end time. This way we see how long it takes to run the loop one time.
This is called frame time and it is used as a parameter for Signin’s
RunNetwork function.

MSG msg;
BOOL bMsg = FALSE;

PeekMessage(&msg, NULL, 0, 0, PM_NOREMOVE);

oldTime = dreamSock_GetCurrentSystemTime();

bool done = false;

try
{

while(!done)
{

while(PeekMessage(&msg, NULL, 0, 0, PM_NOREMOVE))
{

if(!GetMessage(&msg, NULL, 0, 0))
{

Signin.Disconnect();
done = true;

}

TranslateMessage(&msg);
DispatchMessage(&msg);

}

do
{

newTime = dreamSock_GetCurrentSystemTime();
time = newTime – oldTime;

} while (time < 1);

// Run sign-in network
Signin.RunNetwork(time);

oldTime = newTime;
}

}
catch(...)
{

Signin.Disconnect();

322 Tutorial 3 / Creating a Basic Network Application with dreamSock

LogString("Unknown Exception caught in main loop");

MessageBox(NULL, "Unknown Exception caught in main loop", "Error",
MB_OK | MB_TASKMODAL);

return –1;
}

signin.cpp File — CSignin Class Methods

This file contains all the methods required for the sign-in network cli-
ent to operate. We read and write data to the network in this source
file.

/**/
/* Programming Multiplayer Games */
/* Tutorial game client */
/* Programming: */
/* Teijo Hakala */
/**/

#include "common.h"

//---
// Name: empty()
// Desc:
//---
CSignin::CSignin()
{

networkClient = new dreamClient;
clientList = NULL;

}

//---
// Name: empty()
// Desc:
//---
CSignin::~CSignin()
{

delete networkClient;
}

//---
// Name: empty()
// Desc:
//---
void CSignin::ReadPackets(void)
{

char data[1400];
struct sockaddr address;

int type;
int ind;

Tutorial 3 / Creating a Basic Network Application with dreamSock 323

int local;
int ret;
char name[30];

dreamMessage mes;
mes.Init(data, sizeof(data));

while(ret = networkClient->GetPacket(mes.data, &address))
{

mes.SetSize(ret);
mes.BeginReading();

type = mes.ReadByte();

switch(type)
{
case DREAMSOCK_MES_ADDCLIENT:

local = mes.ReadByte();
ind = mes.ReadByte();
strcpy(name, mes.ReadString());

AddClient(local, ind, name);
break;

case DREAMSOCK_MES_REMOVECLIENT:
ind = mes.ReadByte();

RemoveClient(ind);
break;

case USER_MES_SERVEREXIT:
MessageBox(NULL, "Server disconnected", "Info", MB_OK);
Disconnect();
break;

case USER_MES_SIGNIN:
// Skip sequences
mes.ReadShort();
mes.ReadShort();

ret = mes.ReadShort();

LogString("Got lobby signin respond %d", ret);

if(ret != SIGNIN_RESULT_ACCEPTED)
{

MessageBox(hWnd_LoginDialog,
"Sign-in did not succeed. Try again.",
"Error", MB_OK);

}
else
{

MessageBox(hWnd_LoginDialog,
"Sign-in successful. You can now login.",

324 Tutorial 3 / Creating a Basic Network Application with dreamSock

"Info", MB_OK);
}

Disconnect();
break;

}
}

}

//---
// Name: empty()
// Desc:
//---
void CSignin::AddClient(int local, int ind, char *name)
{

// First get a pointer to the beginning of client list
clientLoginData *list = clientList;
clientLoginData *prev;

LogString("App: Client: Adding client with index %d", ind);

// No clients yet, adding the first one
if(clientList == NULL)
{

LogString("App: Client: Adding first client");

clientList = (clientLoginData *) calloc(1,
sizeof(clientLoginData));

if(local)
{

LogString("App: Client: This one is local");
localClient = clientList;

}

clientList->index = ind;
strcpy(clientList->nickname, name);

clientList->next = NULL;
}
else
{

LogString("App: Client: Adding another client");

prev = list;
list = clientList->next;

while(list != NULL)
{

prev = list;
list = list->next;

}

Tutorial 3 / Creating a Basic Network Application with dreamSock 325

list = (clientLoginData *) calloc(1, sizeof(clientLoginData));

if(local)
{

LogString("App: Client: This one is local");
localClient = list;

}

list->index = ind;
strcpy(list->nickname, name);

list->next = NULL;

prev->next = list;
}

}

//---
// Name: empty()
// Desc:
//---
void CSignin::RemoveClient(int ind)
{

clientLoginData *list = clientList;
clientLoginData *prev = NULL;
clientLoginData *next = NULL;

for(; list != NULL; list = list->next)
{

if(list->index == ind)
{

if(prev != NULL)
{

prev->next = list->next;
}

break;
}

prev = list;
}

if(list == clientList)
{

if(list)
{

next = list->next;
free(list);

}

list = NULL;
clientList = next;

}
else

326 Tutorial 3 / Creating a Basic Network Application with dreamSock

{
if(list)
{

next = list->next;
free(list);

}

list = next;
}

}

//---
// Name: empty()
// Desc:
//---
void CSignin::RemoveClients(void)
{

clientLoginData *list = clientList;
clientLoginData *next;

while(list != NULL)
{

if(list)
{

next = list->next;
free(list);

}

list = next;
}

clientList = NULL;
}

//---
// Name: empty()
// Desc:
//---
void CSignin::SendSignIn(char *nickname, char *firstname, char *surname, int

age, char *gender, char *password, char *email)
{

char data[1400];
dreamMessage message;
message.Init(data, sizeof(data));

message.WriteByte(USER_MES_SIGNIN);
message.AddSequences(networkClient);
message.WriteString(nickname);
message.WriteString(firstname);
message.WriteString(surname);
message.WriteByte(age);
message.WriteString(gender);
message.WriteString(password);

Tutorial 3 / Creating a Basic Network Application with dreamSock 327

message.WriteString(email);

networkClient->SendPacket(&message);
}

//---
// Name: empty()
// Desc:
//---
void CSignin::SendKeepAlive(void)
{

char data[1400];
dreamMessage message;
message.Init(data, sizeof(data));

message.WriteByte(USER_MES_KEEPALIVE);
message.AddSequences(networkClient);

networkClient->SendPacket(&message);
}

//---
// Name: empty()
// Desc:
//---
void CSignin::Connect(char *name)
{

LogString("CSignin::Connect");

networkClient->SendConnect(name);
}

//---
// Name: empty()
// Desc:
//---
void CSignin::Disconnect(void)
{

LogString("CSignin::Disconnect");

localClient = NULL;

RemoveClients();
networkClient->SendDisconnect();

}

//---
// Name: empty()
// Desc:
//---
void CSignin::RunNetwork(int msec)
{

if(networkClient->GetConnectionState() == DREAMSOCK_DISCONNECTED)

328 Tutorial 3 / Creating a Basic Network Application with dreamSock

return;

static int keepalive = 0;
keepalive += msec;

if(keepalive > 20000)
{

SendKeepAlive();
keepalive = 0;

}

ReadPackets();
}

CSignin Constructor

Here is the constructor for CSignin. All it does is create the
dreamClient object and set clientList to NULL, which is very
important. Otherwise, the client would not know that the list is empty.

CSignin::CSignin()
{

networkClient = new dreamClient;
clientList = NULL;

}

CSignin Destructor

This is the destructor for CSignin. The dreamClient object is deleted.

CSignin::~CSignin()
{

delete networkClient;
}

ReadPackets Function

Finally we get to read some packets from the server! This function
listens to the sign-in server and parses through system and user
messages.

void CSignin::ReadPackets(void)
{

char data[1400];
struct sockaddr address;

int type;
int ind;
int local;
int ret;
char name[30];

Tutorial 3 / Creating a Basic Network Application with dreamSock 329

dreamMessage mes;
mes.Init(data, sizeof(data));

while(ret = networkClient->GetPacket(mes.data, &address))
{

mes.SetSize(ret);
mes.BeginReading();

type = mes.ReadByte();

switch(type)
{
case DREAMSOCK_MES_ADDCLIENT:

local = mes.ReadByte();
ind = mes.ReadByte();
strcpy(name, mes.ReadString());

AddClient(local, ind, name);
break;

case DREAMSOCK_MES_REMOVECLIENT:
ind = mes.ReadByte();

RemoveClient(ind);
break;

case USER_MES_SERVEREXIT:
MessageBox(NULL, "Server disconnected", "Info", MB_OK);
Disconnect();
break;

case USER_MES_SIGNIN:
// Skip sequences
mes.ReadShort();
mes.ReadShort();

ret = mes.ReadShort();

LogString("Got lobby signin respond %d", ret);

if(ret != SIGNIN_RESULT_ACCEPTED)
{

MessageBox(hWnd_LoginDialog,
"Sign-in did not succeed. Try again.",
"Error", MB_OK);

}
else
{

MessageBox(hWnd_LoginDialog,
"Sign-in successful. You can now login.",
"Info", MB_OK);

}

Disconnect();

330 Tutorial 3 / Creating a Basic Network Application with dreamSock

break;
}

}
}

When the server sends us any data, this is the method that reads the
socket’s data. If no data is coming, the function returns immediately.

Here we have two variables that are filled by dreamClient’s
GetPacket function. One is the data buffer where all the incoming
data goes (we will set this up soon), and the other is a socket address
structure that will hold the remote host’s address after we have first
received something from it. Remember that a client receives data only
from the server, so this address should always be the same (and we
normally have no use for it at all).

char data[1400];
struct sockaddr address;

There are some variables here that are used to store parts of the
incoming data. These are not required, but they make life a bit easier.

int type;
int ind;
int local;
int ret;
char name[30];

Next we initialize a dreamMessage object to hold the incoming mes-
sage. See how simple it is to set the data buffer for a message?

dreamMessage mes;
mes.Init(data, sizeof(data));

Now we are ready to read the packet of the socket, if there is any. When
there is, we read the incoming data to our dreamMessage object and
set the correct size for it. Then we begin reading the message, mes-
sage type first.

while(ret = networkClient->GetPacket(mes.data, &address))
{

mes.SetSize(ret);
mes.BeginReading();

type = mes.ReadByte();
...

Now that we know the message’s type, we can parse the rest of the
message. As you can see, there are dreamSock system messages and
user messages here. We use the same “add client” and “remove client”
messages as dreamSock to add and remove clients.

If the client receives a “server exit” message, we know the server
has shut down and we should unitialize the client. This is a user

Tutorial 3 / Creating a Basic Network Application with dreamSock 331

message; we will see how to send those in the server-side part of this
tutorial.

If we receive a “sign-in” message, we know that the server has pro-
cessed our sign-in request and it has a response for us. So we read it
from the message. Before we can read the response part of the mes-
sage, we must read the message sequence part. We cannot just read the
response because the message sequence numbers come first in the
message array. In this case, we simply read and ignore the sequence
numbers and then move on to the actual message. Then the client dis-
connects from the server, because there is nothing else the sign-in
server has to offer to us.

switch(type)
{
case DREAMSOCK_MES_ADDCLIENT:

local = mes.ReadByte();
ind = mes.ReadByte();
strcpy(name, mes.ReadString());

AddClient(local, ind, name);
break;

case DREAMSOCK_MES_REMOVECLIENT:
ind = mes.ReadByte();

RemoveClient(ind);
break;

case USER_MES_SERVEREXIT:
MessageBox(NULL, "Server disconnected", "Info", MB_OK);
Disconnect();
break;

case USER_MES_SIGNIN:
// Skip sequences
mes.ReadShort();
mes.ReadShort();

ret = mes.ReadShort();

LogString("Got lobby signin respond %d", ret);

if(ret != SIGNIN_RESULT_ACCEPTED)
{

MessageBox(hWnd_LoginDialog,
"Sign-in did not succeed. Try again.", "Error", MB_OK);

}
else
{

MessageBox(hWnd_LoginDialog,
"Sign-in successful. You can now login.", "Info", MB_OK);

332 Tutorial 3 / Creating a Basic Network Application with dreamSock

}

Disconnect();
break;

}

AddClient Function

This function adds a client to the client’s own client list. This list holds
the data essential to the network application itself.

void CSignin::AddClient(int local, int ind, char *name)
{

// First get a pointer to the beginning of client list
clientLoginData *list = clientList;
clientLoginData *prev;

LogString("App: Client: Adding client with index %d", ind);

// No clients yet, adding the first one
if(clientList == NULL)
{

LogString("App: Client: Adding first client");

clientList = (clientLoginData *) calloc(1,
sizeof(clientLoginData));

if(local)
{

LogString("App: Client: This one is local");
localClient = clientList;

}

clientList->index = ind;
strcpy(clientList->nickname, name);

clientList->next = NULL;
}
else
{

LogString("App: Client: Adding another client");

prev = list;
list = clientList->next;

while(list != NULL)
{

prev = list;
list = list->next;

}

list = (clientLoginData *) calloc(1, sizeof(clientLoginData));

if(local)

Tutorial 3 / Creating a Basic Network Application with dreamSock 333

{
LogString("App: Client: This one is local");
localClient = list;

}

list->index = ind;
strcpy(list->nickname, name);

list->next = NULL;

prev->next = list;
}

}

This function works the same way as the AddClient function of
dreamServer. The only difference is that we give more data to store as
a parameter (int local, int ind, char *name). If the first
parameter is 1, the client we are adding to the list is the local client. So
in this case, set the localClient pointer to point to the correct cli-
ent in the list. The other parameters are data to put in the client list.

RemoveClient Function

This function removes a client from the client’s own client list.

void CSignin::RemoveClient(int ind)
{

clientLoginData *list = clientList;
clientLoginData *prev = NULL;
clientLoginData *next = NULL;

for(; list != NULL; list = list->next)
{

if(list->index == ind)
{

if(prev != NULL)
{

prev->next = list->next;
}

break;
}

prev = list;
}

if(list == clientList)
{

if(list)
{

next = list->next;
free(list);

334 Tutorial 3 / Creating a Basic Network Application with dreamSock

}

list = NULL;
clientList = next;

}
else
{

if(list)
{

next = list->next;
free(list);

}

list = next;
}

}

The function takes one parameter (int ind) that is used to identify
the client to remove. In the following loop, we locate the correct client
in the list and update the list. After that, the client can be safely
removed from memory.

for(; list != NULL; list = list->next)
{

if(list->index == ind)
{

if(prev != NULL)
{

prev->next = list->next;
}

break;
}

prev = list;
}

RemoveClients Function

This function removes all clients from the client’s own client list.

void CSignin::RemoveClients(void)
{

clientLoginData *list = clientList;
clientLoginData *next;

while(list != NULL)
{

if(list)
{

next = list->next;
free(list);

}

Tutorial 3 / Creating a Basic Network Application with dreamSock 335

list = next;
}

clientList = NULL;
}

SendSignIn Function

This function sends the “sign-in” message to the server.

void CSignin::SendSignIn(char *nickname, char *firstname, char *surname,
int age, char *gender, char *password, char *email)

{
char data[1400];
dreamMessage message;
message.Init(data, sizeof(data));

message.WriteByte(USER_MES_SIGNIN);
message.AddSequences(networkClient);
message.WriteString(nickname);
message.WriteString(firstname);
message.WriteString(surname);
message.WriteByte(age);
message.WriteString(gender);
message.WriteString(password);
message.WriteString(email);

networkClient->SendPacket(&message);
}

This function takes several parameters, which are the data to send to
the server. The only notable thing here is that we add the sequence
numbers right after the message type.

SendKeepAlive Function

This function is used to keep the client alive on the server if necessary.

void CSignin::SendKeepAlive(void)
{

char data[1400];
dreamMessage message;
message.Init(data, sizeof(data));

message.WriteByte(USER_MES_KEEPALIVE);
message.AddSequences(networkClient);

networkClient->SendPacket(&message);
}

336 Tutorial 3 / Creating a Basic Network Application with dreamSock

Connect Function

This function runs dreamClient’s SendConnect function to connect
to the server.

void CSignin::Connect(char *name)
{

LogString("CSignin::Connect");

networkClient->SendConnect(name);
}

Disconnect Function

This function runs dreamClient’s SendDisconnect function to dis-
connect from the server. We also remove all the clients from the local
client list and set the local client pointer to NULL since they depend on
the connection.

void CSignin::Disconnect(void)
{

LogString("CSignin::Disconnect");

localClient = NULL;

RemoveClients();
networkClient->SendDisconnect();

}

RunNetwork Function

This function is run every frame to keep the network system running.

void CSignin::RunNetwork(int msec)
{

if(networkClient->GetConnectionState() == DREAMSOCK_DISCONNECTED)
return;

static int keepalive = 0;
keepalive += msec;

if(keepalive > 20000)
{

SendKeepAlive();
keepalive = 0;

}

ReadPackets();
}

The function takes one parameter (int msec), the frame time. We
use it to calculate time. Here, we use it to send a “keep alive” message

Tutorial 3 / Creating a Basic Network Application with dreamSock 337

in 20-second intervals. The function’s most important task is to read
the packets of the socket.

Creating a Basic Server Application

Now all we have to do is make the server application. The server
works basically the same way as the client application, but with some
differences of course. This server can be built and run on Windows and
Unix systems. Below is the makefile for Unix.

#C_ARGS = –Wall
CC = gcc

all: dreamSockServer

clean:
rm –f *.o

dreamSockServer: main.o signin.o
$(CC) –o dreamSockServer main.o signin.o –L. –ldreamSock –lm –lstdc++

main.o: main.cpp
$(CC) $(C_ARGS) –c main.cpp –L. –ldreamSock

signin.o: signin.cpp
$(CC) $(C_ARGS) –c signin.cpp –L. –ldreamSock

We need to link dreamSock.lib into the server program. That is done
the same way as in the client application.

We will create the following source code files: main.cpp, signin.cpp,
common.h, network.h, and signin.h.

signin.h File

Like in the client application, signin.h contains the most important class
of the server application. Class CSigninServer is used for all the net-
work operations we need to process.

#ifndef __SIGNIN_H__
#define __SIGNIN_H__

#include "network.h"

#define SIGNIN_RESULT_ACCEPTED 200
#define SIGNIN_RESULT_USERNAMEBAD 201
#define SIGNIN_RESULT_PASSWORDBAD 202
#define SIGNIN_RESULT_MYSQLERROR 203

class CSigninServer
{

338 Tutorial 3 / Creating a Basic Network Application with dreamSock

private:
dreamServer *networkServer;
clientLoginData *clientList;

public:
CSigninServer();
~CSigninServer();

int InitNetwork(void);
void ShutdownNetwork(void);

void ReadPackets(void);
void SendExitNotification(void);

void AddClient(void);
void RemoveClient(struct sockaddr *address);
void RemoveClients(void);

void Frame(int msec);
};

#endif

CSigninServer Class

Here is the CSigninServer class’s member methods and variables. As
you can see, it contains a dreamServer object similar to how the client
application contained a dreamClient object. It also contains another cli-
ent list on the server side (remember that dreamServer also has one).
This is used to store the application-specific data, and both lists have
the same clients in the same order. We will take a closer look at the
clientLoginData structure next.

class CSigninServer
{
private:

dreamServer *networkServer;
clientLoginData *clientList;

public:
CSigninServer();
~CSigninServer();

int InitNetwork(void);
void ShutdownNetwork(void);

void ReadPackets(void);
void SendExitNotification(void);

void AddClient(void);
void RemoveClient(struct sockaddr *address);

Tutorial 3 / Creating a Basic Network Application with dreamSock 339

void RemoveClients(void);

void Frame(int msec);
};

network.h File

This file contains some common data types and definitions, just like on
the client side. There is an important structure in this file:
clientLoginData. This structure is used to hold the clients’ appli-
cation-specific data. In this basic network application, there is nothing
application specific, but later on in the tutorial game we will see some
real data here (like the players’ position on the map). Notice that there
is a pointer to a dreamClient object here. It is set to point to a correct
client when we are adding a client. After that we can use this one struc-
ture to handle the clients because we have their application-specific
data here, and we can also access their network-specific functions
through the netClient pointer.

#ifndef NETWORK_H
#define NETWORK_H

#include "dreamSock.h"

#define USER_MES_SERVEREXIT 1
#define USER_MES_SIGNIN 2

typedef struct clientLoginData
{

dreamClient *netClient;
clientLoginData *next;

} clientLoginData;

#endif

common.h File

This file is used to include common header files all at once.

#ifndef __COMMON_H__
#define __COMMON_H__

#include "dreamSock.h"

#include "network.h"
#include "signin.h"

#endif

340 Tutorial 3 / Creating a Basic Network Application with dreamSock

main.cpp File

This file is the main source file for the server. As you can see, it con-
tains a bit more code than the client version because we have code for
both Unix and Windows systems here.

/**/
/* Programming Multiplayer Games */
/* Tutorial game server */
/* Programming: */
/* Teijo Hakala */
/**/

#ifdef Win32
#ifndef _WINSOCKAPI_
#define _WINSOCKAPI_
#endif

#include <windows.h>

#endif

#ifdef Win32
#include <shellapi.h>

#else
#include <signal.h>
#include <syslog.h>
#include <errno.h>
#include <unistd.h>
#include <sys/time.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <fcntl.h>
#endif

#include "common.h"

#include <string.h>
#include <stdlib.h>
#include <stdio.h>

// Win32 only
#ifdef Win32

// Unix only
#else
int runningDaemon;
#endif

CSigninServer Signin;

Tutorial 3 / Creating a Basic Network Application with dreamSock 341

#ifdef Win32

//---
// Name: empty()
// Desc:
//---
LRESULT CALLBACK WindowProc(HWND WindowhWnd, UINT Message, WPARAM wParam,

LPARAM lParam)
{

// Process messages
switch(Message)
{
case WM_CREATE:

break;

case WM_DESTROY:
PostQuitMessage(0);
break;

default:
break;

}

return DefWindowProc(WindowhWnd, Message, wParam, lParam);
}

//---
// Name: WinMain()
// Desc: Windows app start position
//---
int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR

lpCmdLine, int nCmdShow)
{

WNDCLASS WinClass;

WinClass.style = 0;
WinClass.lpfnWndProc = WindowProc;
WinClass.cbClsExtra = 0;
WinClass.cbWndExtra = 0;
WinClass.hInstance = hInstance;
WinClass.hIcon = LoadIcon(NULL, IDI_APPLICATION);
WinClass.hCursor = LoadCursor(NULL, IDC_ARROW);
WinClass.hbrBackground = (HBRUSH) (COLOR_MENU);
WinClass.lpszMenuName = 0;
WinClass.lpszClassName = "WINCLASS1";

if(!RegisterClass(&WinClass))
return 0;

HWND hwnd = CreateWindow(WinClass.lpszClassName,
"dreamSock server",
WS_OVERLAPPEDWINDOW | WS_VISIBLE,
320,
240,

342 Tutorial 3 / Creating a Basic Network Application with dreamSock

320, 240,
NULL,
NULL,
hInstance,
NULL);

ShowWindow(hwnd, SW_HIDE);

StartLogConsole();

if(Signin.InitNetwork() == 1)
{

PostQuitMessage(0);
}

MSG WinMsg;
bool done = false;
int time, oldTime, newTime;

// first peek at the message without removing it
PeekMessage(&WinMsg, hwnd, 0, 0, PM_NOREMOVE);

oldTime = dreamSock_GetCurrentSystemTime();

try
{

while(!done)
{

while (PeekMessage(&WinMsg, NULL, 0, 0, PM_NOREMOVE))
{

if(!GetMessage(&WinMsg, NULL, 0, 0))
{

Signin.ShutdownNetwork();
dreamSock_Shutdown();

done = true;
}

TranslateMessage(&WinMsg);
DispatchMessage(&WinMsg);

}

do
{

newTime = dreamSock_GetCurrentSystemTime();
time = newTime – oldTime;

} while (time < 1);

Signin.Frame(time);

oldTime = newTime;
}

}
catch(...)

Tutorial 3 / Creating a Basic Network Application with dreamSock 343

{
LogString("Unknown Exception caught in main loop");

Signin.ShutdownNetwork();
dreamSock_Shutdown();

MessageBox(NULL, "Unknown Exception caught in main loop",
"Error", MB_OK | MB_TASKMODAL);

return –1;
}

return WinMsg.wParam;
}

#else

//---
// Name: daemonInit()
// Desc: Initialize Unix daemon
//---
static int daemonInit(void)
{

printf("Running daemon...\n\n");

runningDaemon = 1;

pid_t pid;

if((pid = fork()) < 0)
{

return –1;
}
else if(pid != 0)
{

exit(0);
}

setsid();

umask(0);

close(1);
close(2);
close(3);

return 0;
}

//---
// Name: keyPress()
// Desc: Check for a keypress
//---
int keyPress(void)

344 Tutorial 3 / Creating a Basic Network Application with dreamSock

{
static char keypressed;
struct timeval waittime;
int num_chars_read;
fd_set mask;

FD_SET(0, &mask);

waittime.tv_sec = 0;
waittime.tv_usec = 0;

if(select(1, &mask, 0, 0, &waittime))
{

num_chars_read = read(0, &keypressed, 1);

if(num_chars_read == 1)
return ((int) keypressed);

}

return (–1);
}

//---
// Name: main()
// Desc: Unix app start position
//---
int main(int argc, char **argv)
{

LogString("Welcome to Army War Server v2.0");
LogString("-------------------------------\n");

if(argc > 1)
{

if(strcmp(argv[1], "–daemon") == 0)
{

daemonInit();
}

}

// Ignore the SIGPIPE signal, so the program does not terminate if the
// pipe gets broken
signal(SIGPIPE, SIG_IGN);

if(Signin.InitNetwork() == 1)
{

exit(0);
}

LogString("Init successful");

int time, oldTime, newTime;

oldTime = dreamSock_GetCurrentSystemTime();

Tutorial 3 / Creating a Basic Network Application with dreamSock 345

// App main loop
try
{

if(runningDaemon)
{

// Keep server alive
while(1)
{

do
{

newTime = dreamSock_GetCurrentSystemTime();
time = newTime – oldTime;

} while (time < 1);

Signin.Frame(time);

oldTime = newTime;
}

}
else
{

// Keep server alive (wait for keypress to kill it)
while(keyPress() == –1)
{

do
{

newTime = dreamSock_GetCurrentSystemTime();
time = newTime – oldTime;

} while (time < 1);

Signin.Frame(time);

oldTime = newTime;
}

}
}
catch(...)
{

Signin.ShutdownNetwork();
dreamSock_Shutdown();

LogString("Unknown Exception caught in main loop");

return –1;
}

LogString("Shutting down everything");

Signin.ShutdownNetwork();
dreamSock_Shutdown();

return 0;

346 Tutorial 3 / Creating a Basic Network Application with dreamSock

}

#endif

Global Variables

There are some global variables that we should take a look at first:

int runningDaemon;

CSigninServer Signin;

The integer runningDaemon is a Unix-only variable that tells us if
the program is set to run as a daemon program (on the background).
The CSigninServer Signin is the object that controls the server’s net-
work communications.

WindowProc Function

Let’s begin with Windows functions. This first one is the window pro-
cedure function that handles the window commands. There is nothing
really interesting here as we will be using our log console system as
the main window.

LRESULT CALLBACK WindowProc(HWND WindowhWnd, UINT Message, WPARAM wParam,
LPARAM lParam)

{
// Process messages
switch(Message)
{
case WM_CREATE:

break;

case WM_DESTROY:
PostQuitMessage(0);
break;

default:
break;

}

return DefWindowProc(WindowhWnd, Message, wParam, lParam);
}

WinMain Function

This is the application entry point in Windows.

int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpCmdLine, int nCmdShow)

{

Tutorial 3 / Creating a Basic Network Application with dreamSock 347

WNDCLASS WinClass;

WinClass.style = 0;
WinClass.lpfnWndProc = WindowProc;
WinClass.cbClsExtra = 0;
WinClass.cbWndExtra = 0;
WinClass.hInstance = hInstance;
WinClass.hIcon = LoadIcon(NULL, IDI_APPLICATION);
WinClass.hCursor = LoadCursor(NULL, IDC_ARROW);
WinClass.hbrBackground = (HBRUSH) (COLOR_MENU);
WinClass.lpszMenuName = 0;
WinClass.lpszClassName = "WINCLASS1";

if(!RegisterClass(&WinClass))
return 0;

HWND hwnd = CreateWindow(WinClass.lpszClassName,
"dreamSock server",
WS_OVERLAPPEDWINDOW | WS_VISIBLE,
320,
240,
320, 240,
NULL,
NULL,
hInstance,
NULL);

ShowWindow(hwnd, SW_HIDE);

StartLogConsole();

if(Signin.InitNetwork() == 1)
{

PostQuitMessage(0);
}

MSG WinMsg;
bool done = false;
int time, oldTime, newTime;

// first peek at the message without removing it
PeekMessage(&WinMsg, hwnd, 0, 0, PM_NOREMOVE);

oldTime = dreamSock_GetCurrentSystemTime();

try
{

while(!done)
{

while (PeekMessage(&WinMsg, NULL, 0, 0, PM_NOREMOVE))
{

if(!GetMessage(&WinMsg, NULL, 0, 0))
{

348 Tutorial 3 / Creating a Basic Network Application with dreamSock

Signin.ShutdownNetwork();
dreamSock_Shutdown();

done = true;
}

TranslateMessage(&WinMsg);
DispatchMessage(&WinMsg);

}

do
{

newTime = dreamSock_GetCurrentSystemTime();
time = newTime – oldTime;

} while (time < 1);

Signin.Frame(time);

oldTime = newTime;
}

}
catch(...)
{

LogString("Unknown Exception caught in main loop");

Signin.ShutdownNetwork();
dreamSock_Shutdown();

MessageBox(NULL, "Unknown Exception caught in main loop",
"Error", MB_OK | MB_TASKMODAL);

return –1;
}

return WinMsg.wParam;
}

We want to see what is happening on the server, so instead of a normal
window we are going to open a console window. First though, we need
to open a real window and hide it. It runs the window procedure for us
and keeps the program alive. Then we simply start up our log console
(implemented into dreamSock).

HWND hwnd = CreateWindow(WinClass.lpszClassName,
"dreamSock server",
WS_OVERLAPPEDWINDOW | WS_VISIBLE,
320,
240,
320, 240,
NULL,
NULL,
hInstance,
NULL);

Tutorial 3 / Creating a Basic Network Application with dreamSock 349

ShowWindow(hwnd, SW_HIDE);

StartLogConsole();

Then we can initialize the sign-in server using the CSigninServer
method InitNetwork. If something goes wrong here, we just bail out
from the program by posting a quit message to the main loop.

if(Signin.InitNetwork() == 1)
{

PostQuitMessage(0);
}

The main loop works exactly the same as in the client application. We
try to catch exceptions here too, and that is a very useful thing to do —
it can keep the server running in cases when it normally would crash.
Just like in the client application, we calculate the frame time and use it
in the RunNetwork method of CSigninServer.

MSG WinMsg;
bool done = false;
int time, oldTime, newTime;

// first peek at the message without removing it
PeekMessage(&WinMsg, hwnd, 0, 0, PM_NOREMOVE);

oldTime = dreamSock_GetCurrentSystemTime();

try
{

while(!done)
{

while (PeekMessage(&WinMsg, NULL, 0, 0, PM_NOREMOVE))
{

if(!GetMessage(&WinMsg, NULL, 0, 0))
{

Signin.ShutdownNetwork();
dreamSock_Shutdown();

done = true;
}

TranslateMessage(&WinMsg);
DispatchMessage(&WinMsg);

}

do
{

newTime = dreamSock_GetCurrentSystemTime();
time = newTime – oldTime;

} while (time < 1);

Signin.Frame(time);

350 Tutorial 3 / Creating a Basic Network Application with dreamSock

oldTime = newTime;
}

}
catch(...)
{

LogString("Unknown Exception caught in main loop");

Signin.ShutdownNetwork();
dreamSock_Shutdown();

MessageBox(NULL, "Unknown Exception caught in main loop", "Error",
MB_OK | MB_TASKMODAL);

return –1;
}

daemonInit Function

This function makes the program run as a daemon on Unix systems.

static int daemonInit(void)
{

printf("Running daemon...\n\n");

runningDaemon = 1;

pid_t pid;

if((pid = fork()) < 0)
{

return –1;
}
else if(pid != 0)
{

exit(0);
}

setsid();

umask(0);

close(1);
close(2);
close(3);

return 0;
}

First we create a copy of our process with the fork function. Then we
can close the parent process with the exit function.

pid_t pid;

if((pid = fork()) < 0)

Tutorial 3 / Creating a Basic Network Application with dreamSock 351

{
return –1;

}
else if(pid != 0)
{

exit(0);
}

Next we set a new process group for the process, detaching it from the
terminal we used:

setsid();

Then we set the file creation mask to 0, so we can create files and so
on:

umask(0);

Finally, we close the standard I/O descriptors (stdin, stdout, and stderr)
because they are not required.

close(1);
close(2);
close(3);

keyPress Function

This function tells us if a key has been pressed down. It is used on
non-daemon programs only.

int keyPress(void)
{

static char keypressed;
struct timeval waittime;
int num_chars_read;
fd_set mask;

FD_SET(0, &mask);

waittime.tv_sec = 0;
waittime.tv_usec = 0;

if(select(1, &mask, 0, 0, &waittime))
{

num_chars_read = read(0, &keypressed, 1);

if(num_chars_read == 1)
return ((int) keypressed);

}

return (–1);
}

352 Tutorial 3 / Creating a Basic Network Application with dreamSock

main Function

The last function here is the application entry point for Unix systems.

int main(int argc, char **argv)
{

LogString("Welcome to Army War Server v2.0");
LogString("-------------------------------\n");

if(argc > 1)
{

if(strcmp(argv[1], "–daemon") == 0)
{

daemonInit();
}

}

// Ignore the SIGPIPE signal, so the program does not terminate if the
// pipe gets broken
signal(SIGPIPE, SIG_IGN);

if(Signin.InitNetwork() == 1)
{

exit(0);
}

LogString("Init successful");

int time, oldTime, newTime;

oldTime = dreamSock_GetCurrentSystemTime();

// App main loop
try
{

if(runningDaemon)
{

// Keep server alive
while(1)
{

do
{

newTime = dreamSock_GetCurrentSystemTime();
time = newTime – oldTime;

} while (time < 1);

Signin.Frame(time);

oldTime = newTime;
}

}

Tutorial 3 / Creating a Basic Network Application with dreamSock 353

else
{

// Keep server alive (wait for keypress to kill it)
while(keyPress() == –1)
{

do
{

newTime = dreamSock_GetCurrentSystemTime();
time = newTime – oldTime;

} while (time < 1);

Signin.Frame(time);

oldTime = newTime;
}

}
}
catch(...)
{

Signin.ShutdownNetwork();
dreamSock_Shutdown();

LogString("Unknown Exception caught in main loop");

return –1;
}

LogString("Shutting down everything");

Signin.ShutdownNetwork();
dreamSock_Shutdown();

return 0;
}

If we give a “–daemon” parameter for the program when we start it,
the daemon is initialized:

if(argc > 1)
{

if(strcmp(argv[1], "–daemon") == 0)
{

daemonInit();
}

}

There are two version of the main loop. One is for the daemon and the
other is for the foreground application. If the program is not running as
a daemon, we can terminate the program by pressing any key. Other-
wise, the main loop works the same way as in Windows.

// Keep server alive (wait for keypress to kill it)
while(keyPress() == –1)
{

do

354 Tutorial 3 / Creating a Basic Network Application with dreamSock

{
newTime = dreamSock_GetCurrentSystemTime();
time = newTime – oldTime;

} while (time < 1);

Signin.Frame(time);

oldTime = newTime;
}

signin.cpp File — CSigninServer Class Methods

This is the signin.cpp file that contains the methods for CSigninServer.

/**/
/* Programming Multiplayer Games */
/* Tutorial game server */
/* Programming: */
/* Teijo Hakala */
/**/

#include "common.h"
#include <malloc.h>

//---
// Name: empty()
// Desc:
//---
CSigninServer::CSigninServer()
{

networkServer = new dreamServer;
clientList = NULL;

}

//---
// Name: empty()
// Desc:
//---
CSigninServer::~CSigninServer()
{

delete networkServer;
}

//---
// Name: InitNetwork()
// Desc: Initialize network
//---
int CSigninServer::InitNetwork(void)
{

// Initialize dreamSock and the server
if(dreamSock_Initialize() != 0)
{

LogString("Error initializing Communication Library!");

Tutorial 3 / Creating a Basic Network Application with dreamSock 355

return 1;
}

int ret = networkServer->Initialize("", 30002);

if(ret == DREAMSOCK_SERVER_ERROR)
{

#ifdef Win32
char text[64];
sprintf(text, "Could not open server on port %d",

networkServer->GetPort());

MessageBox(NULL, text, "Error", MB_OK);
#else

LogString("Could not open server on port %d",
networkServer->GetPort());

#endif
return 1;

}

return 0;
}

//---
// Name: ShutdownNetwork()
// Desc: Shut down network
//---
void CSigninServer::ShutdownNetwork(void)
{

LogString("Shutting down sign-in server...");

SendExitNotification();
RemoveClients();

}

//---
// Name: empty()
// Desc:
//---
void CSigninServer::ReadPackets(void)
{

char data[1400];

int type;
int ret;

// Some incoming data
char password[50];
int respond;

char nickname[30];
char surname[30];
char firstname[30];
char gender[10];

356 Tutorial 3 / Creating a Basic Network Application with dreamSock

char email[30];
int age;

struct sockaddr address;

clientLoginData *clList;

dreamMessage mes;
mes.Init(data, sizeof(data));

// Get the packet from the socket
try
{

while(ret = networkServer->GetPacket(mes.data, &address))
{

mes.SetSize(ret);
mes.BeginReading();

type = mes.ReadByte();

// Check the type of the message
switch(type)
{
case DREAMSOCK_MES_CONNECT:

AddClient();
break;

case DREAMSOCK_MES_DISCONNECT:
RemoveClient(&address);
break;

case USER_MES_SIGNIN:
// Skip sequences
mes.ReadShort();
mes.ReadShort();

strcpy(nickname, mes.ReadString());
strcpy(firstname, mes.ReadString());
strcpy(surname, mes.ReadString());
age = mes.ReadByte();
strcpy(gender, mes.ReadString());
strcpy(password, mes.ReadString());
strcpy(email, mes.ReadString());

LogString("Signin: Player %s signed in", nickname);

// MySQL connection comes here

respond = SIGNIN_RESULT_ACCEPTED;

// Find the correct client by comparing addresses
clList = clientList;

for(; clList != NULL; clList = clList->next)

Tutorial 3 / Creating a Basic Network Application with dreamSock 357

{
if(memcmp(clList->netClient->

GetSocketAddress(), &address,
sizeof(address)) == 0)

{
clList->netClient->message.Init
(clList->netClient->
message.outgoingData,
sizeof(clList->netClient->
message.outgoingData));

clList->netClient->message.WriteByte
(USER_MES_SIGNIN); // type

clList->netClient->message.AddSequences
(clList->netClient); // sequences

clList->netClient->message.WriteShort
(respond); // respond

clList->netClient->SendPacket();

LogString("Sending signin respond");

break;
}

}

break;
}

}
}
catch(...)
{

LogString("Unknown Exception caught in Signin ReadPackets loop");

#ifdef Win32
MessageBox(NULL, "Unknown Exception caught in Signin ReadPackets

loop", "Error", MB_OK | MB_TASKMODAL);
#endif

}
}

//---
// Name: empty()
// Desc:
//---
void CSigninServer::SendExitNotification(void)
{

clientLoginData *toClient = clientList;

for(; toClient != NULL; toClient = toClient->next)
{

toClient->netClient->message.Init(toClient->netClient->
message.outgoingData, sizeof(toClient->netClient->
message.outgoingData));

358 Tutorial 3 / Creating a Basic Network Application with dreamSock

toClient->netClient->message.WriteByte(USER_MES_SERVEREXIT);
// type
toClient->netClient->message.AddSequences(toClient->netClient);
// sequences

}

networkServer->SendPackets();
}

//---
// Name: empty()
// Desc:
//---
void CSigninServer::AddClient(void)
{

// First get a pointer to the beginning of client list
clientLoginData *list = clientList;
clientLoginData *prev;
dreamClient *netList = networkServer->GetClientList();

// No clients yet, adding the first one
if(clientList == NULL)
{

LogString("App: Server: Adding first client");

clientList = (clientLoginData *) calloc(1,
sizeof(clientLoginData));

clientList->netClient = netList;

clientList->next = NULL;
}
else
{

LogString("App: Server: Adding another client");

prev = list;
list = clientList->next;
netList = netList->next;

while(list != NULL)
{

prev = list;
list = list->next;
netList = netList->next;

}

list = (clientLoginData *) calloc(1, sizeof(clientLoginData));

list->netClient = netList;

list->next = NULL;

prev->next = list;

Tutorial 3 / Creating a Basic Network Application with dreamSock 359

}
}

//---
// Name: empty()
// Desc:
//---
void CSigninServer::RemoveClient(struct sockaddr *address)
{

clientLoginData *list = clientList;
clientLoginData *prev = NULL;
clientLoginData *next = NULL;

for(; list != NULL; list = list->next)
{

if(memcmp(list->netClient->GetSocketAddress(), address,
sizeof(address)) == 0)

{
if(prev != NULL)
{

prev->next = list->next;
}

break;
}

prev = list;
}

if(list == clientList)
{

if(list)
{

next = list->next;
free(list);

}

list = NULL;
clientList = next;

}
else
{

if(list)
{

next = list->next;
free(list);

}

list = next;
}

}

360 Tutorial 3 / Creating a Basic Network Application with dreamSock

//---
// Name: empty()
// Desc:
//---
void CSigninServer::RemoveClients(void)
{

clientLoginData *list = clientList;
clientLoginData *next;

while(list != NULL)
{

if(list)
{

next = list->next;
free(list);

}

list = next;
}

clientList = NULL;
}

//---
// Name: empty()
// Desc:
//---
void CSigninServer::RunNetwork(int msec)
{

ReadPackets();
}

CSigninServer Constructor

Here is the constructor for CSigninServer. The dreamServer object is
created and clientList is set to NULL.

CSigninServer::CSigninServer()
{

networkServer = new dreamServer;
clientList = NULL;

}

CSigninServer Destructor

Here is the destructor for CSigninServer. The dreamServer object is
deleted.

CSigninServer::~CSigninServer()
{

delete networkServer;
}

Tutorial 3 / Creating a Basic Network Application with dreamSock 361

InitNetwork Function

This function initializes the server’s socket so we can start serving our
clients. The sign-in server uses UDP port 30002.

int CSigninServer::InitNetwork(void)
{

// Initialize dreamSock and the server
if(dreamSock_Initialize() != 0)
{

LogString("Error initializing Communication Library!");
return 1;

}

int ret = networkServer->Initialize("", 30002);

if(ret == DREAMSOCK_SERVER_ERROR)
{

#ifdef Win32
char text[64];
sprintf(text, "Could not open server on port %d",

networkServer->GetPort());

MessageBox(NULL, text, "Error", MB_OK);
#else

LogString("Could not open server on port %d",
networkServer->GetPort());

#endif
return 1;

}

return 0;
}

ShutdownNetwork Function

This function uninitializes the server and tells everyone we are going
down.

void CSigninServer::ShutdownNetwork(void)
{

LogString("Shutting down sign-in server...");

SendExitNotification();
RemoveClients();

}

ReadPackets Function

This function reads the packets from the clients. It functions the same
way as it does on the client side. Messages are read into a
dreamMessage, and they are parsed based on the message type.

362 Tutorial 3 / Creating a Basic Network Application with dreamSock

void CSigninServer::ReadPackets(void)
{

char data[1400];

int type;
int ret;

// Some incoming data
char password[50];
int respond;

char nickname[30];
char surname[30];
char firstname[30];
char gender[10];
char email[30];
int age;

struct sockaddr address;

clientLoginData *clList;

dreamMessage mes;
mes.Init(data, sizeof(data));

// Get the packet from the socket
try
{

while(ret = networkServer->GetPacket(mes.data, &address))
{

mes.SetSize(ret);
mes.BeginReading();

type = mes.ReadByte();

// Check the type of the message
switch(type)
{
case DREAMSOCK_MES_CONNECT:

AddClient();
break;

case DREAMSOCK_MES_DISCONNECT:
RemoveClient(&address);
break;

case USER_MES_SIGNIN:
// Skip sequences
mes.ReadShort();
mes.ReadShort();

strcpy(nickname, mes.ReadString());
strcpy(firstname, mes.ReadString());
strcpy(surname, mes.ReadString());

Tutorial 3 / Creating a Basic Network Application with dreamSock 363

age = mes.ReadByte();
strcpy(gender, mes.ReadString());
strcpy(password, mes.ReadString());
strcpy(email, mes.ReadString());

LogString("Signin: Player %s signed in", nickname);

// MySQL connection comes here

respond = SIGNIN_RESULT_ACCEPTED;

// Find the correct client by comparing addresses
clList = clientList;

for(; clList != NULL; clList = clList->next)
{

if(memcmp(clList->netClient->
GetSocketAddress(), &address,
sizeof(address)) == 0)

{
clList->netClient->message.Init
(clList->netClient->
message.outgoingData, sizeof(clList->
netClient->message.outgoingData));

clList->netClient->message.WriteByte
(USER_MES_SIGNIN); // type

clList->netClient->message.AddSequences
(clList->netClient); // sequences

clList->netClient->message.WriteShort
(respond); // respond

clList->netClient->SendPacket();

LogString("Sending signin respond");

break;
}

}

break;
}

}
}
catch(...)
{

LogString("Unknown Exception caught in Signin ReadPackets loop");

#ifdef Win32
MessageBox(NULL, "Unknown Exception caught in Signin ReadPackets

loop", "Error", MB_OK | MB_TASKMODAL);
#endif

}
}

364 Tutorial 3 / Creating a Basic Network Application with dreamSock

Here we process the sign-in message that comes from a client. We do
not use MySQL in this tutorial, but you can see where the MySQL con-
nection would be placed. Obviously when we have the information to
put into the database, we would put it there.

case USER_MES_SIGNIN:
// Skip sequences
mes.ReadShort();
mes.ReadShort();

strcpy(nickname, mes.ReadString());
strcpy(firstname, mes.ReadString());
strcpy(surname, mes.ReadString());
age = mes.ReadByte();
strcpy(gender, mes.ReadString());
strcpy(password, mes.ReadString());
strcpy(email, mes.ReadString());

LogString("Signin: Player %s signed in", nickname);

// MySQL connection comes here

respond = SIGNIN_RESULT_ACCEPTED;
...

We need to find out which host sent us this message. We compare the
addresses of the old clients (in the client list) to the address the mes-
sage came from. When we find the correct one, we send the sign-in
response.

// Find the correct client by comparing addresses
clList = clientList;

for(; clList != NULL; clList = clList->next)
{

if(memcmp(clList->netClient->GetSocketAddress(), &address,
sizeof(address)) == 0)

{
clList->netClient->message.Init(clList->netClient->

message.outgoingData, sizeof(clList->netClient->
message.outgoingData));

clList->netClient->message.WriteByte(USER_MES_SIGNIN);
// type
clList->netClient->message.AddSequences(clList->netClient);
// sequences
clList->netClient->message.WriteShort(respond);
// respond
clList->netClient->SendPacket();

LogString("Sending signin respond");

Tutorial 3 / Creating a Basic Network Application with dreamSock 365

break;
}

}

SendExitNotification Function

This function sends a packet to each client to tell them that the server
is going down. We use the dreamClient’s internal message, so we can
use dreamServer’s SendPackets function to send the packets all at
once.

void CSigninServer::SendExitNotification(void)
{

clientLoginData *toClient = clientList;

for(; toClient != NULL; toClient = toClient->next)
{

toClient->netClient->message.Init(toClient->netClient->
message.outgoingData, sizeof(toClient->netClient->
message.outgoingData));

toClient->netClient->message.WriteByte(USER_MES_SERVEREXIT);
// type
toClient->netClient->message.AddSequences(toClient->netClient);
// sequences

}

networkServer->SendPackets();
}

AddClient Function

The AddClient function adds a client to the server application’s own
client list (filling the application-specific data). Notice how we set the
netClient pointer to point to the matching client in dreamSock’s
client list.

void CSigninServer::AddClient(void)
{

// First get a pointer to the beginning of client list
clientLoginData *list = clientList;
clientLoginData *prev;
dreamClient *netList = networkServer->GetClientList();

// No clients yet, adding the first one
if(clientList == NULL)
{

LogString("App: Server: Adding first client");

clientList = (clientLoginData *) calloc(1,
sizeof(clientLoginData));

366 Tutorial 3 / Creating a Basic Network Application with dreamSock

clientList->netClient = netList;

clientList->next = NULL;
}
else
{

LogString("App: Server: Adding another client");

prev = list;
list = clientList->next;
netList = netList->next;

while(list != NULL)
{

prev = list;
list = list->next;
netList = netList->next;

}

list = (clientLoginData *) calloc(1, sizeof(clientLoginData));

list->netClient = netList;

list->next = NULL;

prev->next = list;
}

}

RemoveClient Function

This function removes a client from the server application’s client list.

void CSigninServer::RemoveClient(struct sockaddr *address)
{

clientLoginData *list = clientList;
clientLoginData *prev = NULL;
clientLoginData *next = NULL;

for(; list != NULL; list = list->next)
{

if(memcmp(list->netClient->GetSocketAddress(), address,
sizeof(address)) == 0)

{
if(prev != NULL)
{

prev->next = list->next;
}

break;
}

Tutorial 3 / Creating a Basic Network Application with dreamSock 367

prev = list;
}

if(list == clientList)
{

if(list)
{

next = list->next;
free(list);

}

list = NULL;
clientList = next;

}
else
{

if(list)
{

next = list->next;
free(list);

}

list = next;
}

}

This function takes one parameter (struct sockaddr *address),
which is the socket address of the client to remove. The address is
looked up from the client list, and the matching client is removed.

RemoveClients Function

This function removes all the clients from the server application’s cli-
ent list.

void CSigninServer::RemoveClients(void)
{

clientLoginData *list = clientList;
clientLoginData *next;

while(list != NULL)
{

if(list)
{

next = list->next;
free(list);

}

list = next;
}

clientList = NULL;
}

368 Tutorial 3 / Creating a Basic Network Application with dreamSock

RunNetwork Function

This function is run every frame. Its purpose is to keep the network
running.

void CSigninServer::RunNetwork(int msec)
{

ReadPackets();
}

Summary

In this tutorial we learned how to create a basic network application
with dreamSock. We learned how to create both a client application and
a server application. Together they make a complete network applica-
tion. We now know how to send and receive messages, so we can move
on to more complicated things in our game tutorial. But before we do,
we create the game lobby in the next tutorial.

Tutorial 3 / Creating a Basic Network Application with dreamSock 369

This page intentionally left blank.

Tutorial 4

Creating the
Game Lobby

Introduction

In this tutorial we learn how to create the lobby for our game, where
the players can chat and create games to play. We will see how to use
the network library to make the lobby work, but we will also learn how
to create the lobby dialog itself. The lobby dialog is the screen where
you see all the players, their chat messages, and the existing games.
After this tutorial we can actually create and join the games in the
lobby, but we cannot start the game yet. Starting and making the game
work is explained in Tutorial 5, “Creating Your Online Game.”

Creating the Lobby Client Application

We will first create the client application for the lobby, which is an
updated version of the previous tutorial. This time when you log in, the
lobby dialog is opened.

371

Creating the Dialogs

It is best to start off with creating the dialogs that we will use in the
lobby. When we have the dialogs ready, we know what buttons there
are, what dialog opens when you press the buttons, and so on.

Lobby Dialog

The lobby dialog is the main screen of the lobby. There you see all the
players who have logged in, their chat messages, and the existing
games. You can also see the buttons for creating a new game and join-
ing an existing one. This dialog should also have a button for logging
out from the server.

We create the lobby dialog exactly the same way we created the ear-
lier dialogs for login and signup. As we recall from the earlier tutorial,
the dialogs are created from the Insert menu in Visual Studio. Select
Resource…, Dialog to choose what to create, and then click the New
button to create a new dialog. Now you see a new dialog (like the one
when you created the login dialogs) in front of you, but it does not look
at all like we want it to. So let’s modify it.

Before we do anything else, we rename the dialog to IDD_LOBBY-
DIALOG. Click the right mouse button on the name of the new dialog
in the list on the left side. Click on Properties and type the new name
in. Now you can close the properties window.

Once the name is set up properly, we can change the style of the dialog
to what we want. Right-click anywhere and click on Properties in the
pop-up menu (or double-click on the empty space in the dialog preview
window) to open the Dialog Properties window.

The General tab does not have anything interesting for us in this
case, so move on to the next tab — the Styles tab. In the Styles tab you
see many check boxes and two combo boxes. Uncheck all the check
boxes, choose Child as the dialog style from the upper combo box, and
choose None for the border in the lower combo box. Now our dialog is a
child window and has no border of its own. It also does not have a title
bar showing its name. We do all of this because this dialog fits into the

372 Tutorial 4 / Creating the Game Lobby

Figure 1

game main window, and therefore the lobby dialog actually is not a win-
dow of its own.

The other tabs in the Dialog Properties window do not interest us, so it
can be closed now.

Next, remove the OK and Cancel buttons that were added automati-
cally to the dialog when it was created.

Now we have an empty dialog that is ready for adding new buttons, edit
boxes, and lists. Figure 4 shows what the complete lobby dialog should
look like.

Now that the dialog is all laid out, we need to name the controls so we
can use them in the code as well. They do already have names, but
those are the default names based on the control type, so to make

Tutorial 4 / Creating the Game Lobby 373

Figure 2

Figure 3

Figure 4

everything as clear as possible, we name the controls to correspond to
their usage. Here are the three list control names starting from left to
right:

IDC_CHATLIST
IDC_PLAYERLIST
IDC_GAMELIST

We do not wish to sort any of the list items in any list in the lobby, so
we disable the sorting option from each one. Double-click on the list (or
right-click and choose Properties from the pop-up menu) to open the
List Box Properties window. Uncheck the Sort check box on the Styles
tab and close the properties window. Repeat this for all the list boxes.

The chat edit box and the Send button are named as follows:

IDC_CHATMESSAGE
IDC_SENDCHATMESSAGE

The Create New Game, Join Selected Game, and Log Out buttons are
named as follows:

IDC_CREATEGAME
IDC_JOINGAME
IDC_LOGOUT

Note that the Join Selected Game button is disabled by default because
you can join a game only when you have selected one and when the
selected game is not in progress. Disabling the button by default is
done from the Push Button Properties window, which is opened by dou-
ble-clicking on the button (or right-clicking on it and choosing
Properties from the pop-up menu). Check the Disabled check box and
close the properties window.

374 Tutorial 4 / Creating the Game Lobby

Figure 5

Figure 6

The lobby dialog is complete. All we need to do now is create the other
dialogs that open when you press the buttons in the lobby dialog.

Create Game Dialog

We create the Create Game dialog the same way as the lobby dialog.
Let’s start by naming the dialog IDD_CREATEGAME in the Dialog
Properties window. Next, open another Dialog Properties window by
double-clicking on the empty space in the preview window.

On the Styles tab, set the dialog style to Popup and the border to Dialog
Frame. Make sure the Title bar check box is checked, and close the
properties window.

Lay out the dialog as shown in the following figure.

Then name the controls as shown in the following list, putting the edit
box name first, then the Cancel and OK buttons.

IDC_GAMENAME
IDC_CANCELCREATEGAME
IDC_DOCREATEGAME

When the user presses the OK button, a dialog will open that shows
the players who have joined that game and gives the game host the
ability to start or cancel the game.

Tutorial 4 / Creating the Game Lobby 375

Figure 7

Figure 8

Create View Players Dialog

Again, we create another dialog as we have done before, this time
naming it IDD_CREATEVIEWPLAYERS. This dialog has the same
properties as the Create Game dialog, so we will not go through them
here.

Lay out the dialog as shown in the following figure.

Then name the controls as listed here. The first name in the list is for
the player list box, the second for the Cancel button, and the last one
for the Start Game button.

IDC_PLAYERSINGAME
IDC_CANCELGAME
IDC_STARTGAME

The Start Game button starts the actual game, but in this tutorial we
stop at this dialog. Pressing the Start Game button at this point does
nothing.

Join Game Dialog

Once more we create a dialog as we have created all the other dialogs.
This is the very last dialog to create for this project. Name it
IDD_JOINVIEWPLAYERS, as it is used
only to show the players who have joined
the game. We can also cancel the join if we
do not wish to be part of the game after all.

Lay out the dialog as shown here.

376 Tutorial 4 / Creating the Game Lobby

Figure 9

Figure 10

Then name the two controls as follows:

IDC_JOINPLAYERSINGAME
IDC_JOINCANCEL

Now all the dialogs are done, and we can move on to program the lobby
system.

Lobby System Code

The lobby’s network part works the same way as the sign-in system’s
network part, so we will not focus on that here. If you have not read
Tutorial 3 yet, you should do so now. This tutorial shares a lot of similar
code with that one, but here we focus more on how to make the lobby
work and build it on top of our network system.

Lobby Client Code

Let’s begin with the client-side application. First we will take a look at
the source code files: lobby.cpp, main.cpp, lobby.h, main.h, and net-
work.h.

lobby.h File

This is the file for the lobby’s CLobby class. It is similar to the CSignin
class in the previous tutorial.

#ifndef __LOBBY_H__
#define __LOBBY_H__

#include "network.h"
#include "main.h"

#define LOBBYLOGIN_RESULT_ACCEPTED 200
#define LOBBYLOGIN_RESULT_USERNAMEBAD 201
#define LOBBYLOGIN_RESULT_PASSWORDBAD 202
#define LOBBYLOGIN_RESULT_MYSQLERROR 203

class CLobby
{
private:

dreamClient *networkClient;
clientLoginData *clientList;
clientLoginData *localClient; // Pointer to the local client in

// the client list

Tutorial 4 / Creating the Game Lobby 377

int gameAmount;
int timeConnecting; // How long we have tried

// to connect

public:
CLobby();
~CLobby();

dreamClient *GetNetworkClient(void) {return networkClient;}
clientLoginData *GetLocalClient(void) {return localClient;}

void RefreshPlayerList(void);
void RefreshGameList(void);
void RefreshJoinedPlayersList(void);

void ReadPackets(void);

void AddClient(int local, int index, char *name);
void RemoveClient(int index);
void RemoveClients(void);

void AddGame(char *name, int index, bool inProgress);
void RemoveGame(char *name);
void RemoveGames(void);

void RequestGameData(void);
void SendChat(char *text);
void SendCreateGame(char *gamename);
void SendRemoveGame(char *gamename);
void SendStartGame(int ind);
void SendKeepAlive(void);

void Connect(char *name, char *password);
void Disconnect(void);

void RunNetwork(int msec);

int GetGameAmount(void) {return gameAmount;}
};

extern CLobby Lobby;

#endif

There are a couple of member variables that we should take a look at:

int gameAmount;
int timeConnecting;

The integer gameAmount tells us how many games exist at the
moment. The integer timeConnecting tells us how long we have
tried to connect to the lobby server (in milliseconds).

378 Tutorial 4 / Creating the Game Lobby

network.h File

This file is almost the same as network.h in the sign-in tutorial, but
now we have more message types.

#ifndef NETWORK_H
#define NETWORK_H

#define USER_MES_SERVEREXIT 1
#define USER_MES_LOGIN 2
#define USER_MES_SIGNIN 3
#define USER_MES_CHAT 4
#define USER_MES_CREATEGAME 5
#define USER_MES_REMOVEGAME 6
#define USER_MES_GAMEDATA 7
#define USER_MES_STARTGAME 8
#define USER_MES_MAPDATA 9
#define USER_MES_KEEPALIVE 10

typedef struct clientLoginData
{

int index;
char nickname[30];
clientLoginData *next;

} clientLoginData;

#endif

main.h File

This is the main application header file, which sounds more important
than it is. We have only some externs and function prototypes here.

#ifndef __TUTMAIN_H__
#define __TUTMAIN_H__

LRESULT CALLBACK ApplicationProc(HWND hWnd, UINT uMsg, WPARAM wParam,
LPARAM lParam);

extern char serverIP[32];

extern HINSTANCE hInst;
extern HWND hWnd_Application;
extern HWND hWnd_CreateAccountDialog;
extern HWND hWnd_LoginDialog;
extern HWND hWnd_LobbyDialog;

extern HWND hWnd_CreateGameDialog;
extern HWND hWnd_JoinGameDialog;

extern HWND hWnd_CreateViewPlayersDialog;

#endif

Tutorial 4 / Creating the Game Lobby 379

main.cpp File

This time we will not look at the entire file as it is basically the same as
before. Instead, we will look at the new functions directly.

CreateViewPlayersDialogProc Function

This function handles the dialog for viewing players who join the cre-
ated game. The dialog has Start Game and Cancel buttons, and they are
processed here.

LRESULT CALLBACK CreateViewPlayersDialogProc(HWND hWnd, UINT uMsg, WPARAM
wParam, LPARAM lParam)

{
switch (uMsg)
{
case WM_COMMAND:

switch(LOWORD(wParam))
{
case IDC_STARTGAME:

DestroyWindow(hWnd_CreateViewPlayersDialog);
break;

case IDC_CANCELGAME:
DestroyWindow(hWnd_CreateViewPlayersDialog);
break;

default:
break;

}

break;
}

return 0;
}

CreateGameDialogProc Function

This dialog procedure takes in the name for a new game and sends a
create game message to the server if the player wants to create a
game. It also makes sure that you cannot press the Create Game button
unless you have entered a name for the game.

LRESULT CALLBACK CreateGameDialogProc(HWND hWnd, UINT uMsg, WPARAM wParam,
LPARAM lParam)

{
char gamename[32];

switch (uMsg)
{

380 Tutorial 4 / Creating the Game Lobby

case WM_COMMAND:
switch(LOWORD(wParam))
{
case IDC_DOCREATEGAME:

GetWindowText(GetDlgItem(hWnd_CreateGameDialog,
IDC_GAMENAME), gamename, 32);

DestroyWindow(hWnd_CreateGameDialog);

hWnd_CreateViewPlayersDialog = CreateDialog(hInst,
MAKEINTRESOURCE(IDD_CREATEVIEWPLAYERS),
hWnd_Application, (DLGPROC)
CreateViewPlayersDialogProc);

ShowWindow(hWnd_CreateViewPlayersDialog, SW_SHOW);

Lobby.SendCreateGame(gamename);
break;

case IDC_CANCELCREATEGAME:
DestroyWindow(hWnd_CreateGameDialog);
break;

default:
if(SendMessage(GetDlgItem(hWnd_CreateGameDialog,

IDC_GAMENAME), EM_GETMODIFY, 0, 0))
{

GetWindowText(GetDlgItem(hWnd_CreateGameDialog,
IDC_GAMENAME), gamename, 32);

if(strcmp(gamename, "") == 0)
{

EnableWindow(GetDlgItem(hWnd_CreateGameDialog,
IDC_DOCREATEGAME), FALSE);

}
else
{

EnableWindow(GetDlgItem(hWnd_CreateGameDialog,
IDC_DOCREATEGAME), TRUE);

}
}

break;
}

break;
}

return 0;
}

Tutorial 4 / Creating the Game Lobby 381

JoinGameDialogProc Function

This dialog procedure runs in the background of the dialog that shows
us the players who have joined the game.

LRESULT CALLBACK JoinGameDialogProc(HWND hWnd, UINT uMsg, WPARAM wParam,
LPARAM lParam)

{
switch (uMsg)
{
case WM_COMMAND:

switch(LOWORD(wParam))
{
case IDC_JOINCANCEL:

DestroyWindow(hWnd_JoinGameDialog);
break;

default:
break;

}

break;
}

return 0;
}

LoginDialogProc Function

This function takes in the login information and tries to connect the
server. The lobby server runs on UDP port 30003.

LRESULT CALLBACK LoginDialogProc(HWND hWnd, UINT uMsg, WPARAM wParam,
LPARAM lParam)

{
char nickname[30];
char password[50];
int ret;

switch (uMsg)
{

case WM_COMMAND:
{

switch(LOWORD(wParam))
{

case IDC_LOGIN_QUIT:
PostQuitMessage(0);
break;

case IDC_LOGIN_CREATEACCOUNT:
if(!hWnd_CreateAccountDialog)
{

hWnd_CreateAccountDialog =
CreateDialog(hInst,

382 Tutorial 4 / Creating the Game Lobby

MAKEINTRESOURCE(IDD_CREATEACCOUNT),
hWnd_Application, (DLGPROC)
CreateAccountDialogProc);

}
break;

case IDC_DOLOGIN:
// -> First get the IP address of the server
// from the dialog
GetDlgItemText(hWnd_LoginDialog,

IDC_LOGIN_IPADDRESS, serverIP, 16);

// -> Store the player data in local variables
GetDlgItemText(hWnd_LoginDialog,

IDC_LOGIN_NICKNAME, nickname, 30);
GetDlgItemText(hWnd_LoginDialog,

IDC_LOGIN_PASSWORD, password, 50);

// -> Hide the login window
ShowWindow(hWnd_LoginDialog, SW_HIDE);

ret = Lobby.GetNetworkClient()->Initialize("",
serverIP, 30003);

if(ret == DREAMSOCK_CLIENT_ERROR)
{

char text[64];
sprintf(text, "Could not open client

socket");

MessageBox(NULL, text, "Error", MB_OK);
}

Lobby.Connect(nickname, password);

break;

default:
break;

}
return 0;

}
case WM_CLOSE:
{

PostQuitMessage(0);
break;

}
}

return 0;
}

Tutorial 4 / Creating the Game Lobby 383

LobbyDialogProc Function

Now here is the main lobby dialog procedure function. It controls all the
user commands in the lobby screen, such as chat messaging.

LRESULT CALLBACK LobbyDialogProc(HWND hWnd, UINT uMsg, WPARAM wParam,
LPARAM lParam)

{
char chatMessage[256];
char temp[256];
int selectedGame;

switch (uMsg)
{
case WM_COMMAND:

switch(LOWORD(wParam))
{
case IDC_LOGOUT:

Lobby.Disconnect();

// Hide the lobby
ShowWindow(hWnd_LobbyDialog, SW_HIDE);
// Recreate the login dialog
hWnd_LoginDialog = CreateDialog(hInst,MAKEINTRESOURCE

(IDD_LOGINDIALOG),hWnd_Application,
(DLGPROC)LoginDialogProc);

break;

case IDC_SENDCHATMESSAGE:
GetWindowText(GetDlgItem(hWnd_LobbyDialog,

IDC_CHATMESSAGE), temp, 255);

sprintf(chatMessage, "%s: ", Lobby.GetLocalClient()->
nickname);

strcat(chatMessage, temp);

Lobby.SendChat(chatMessage);

SetWindowText(GetDlgItem(hWnd_LobbyDialog,
IDC_CHATMESSAGE), "");

break;

case IDC_CREATEGAME:
hWnd_CreateGameDialog = CreateDialog(hInst,

MAKEINTRESOURCE(IDD_CREATEGAME),
hWnd_Application, (DLGPROC) CreateGameDialogProc);

ShowWindow(hWnd_CreateGameDialog, SW_SHOW);
break;

case IDC_JOINGAME:
selectedGame = SendMessage(GetDlgItem(hWnd_LobbyDialog,

IDC_GAMELIST), LB_GETCURSEL, 0, 0);

384 Tutorial 4 / Creating the Game Lobby

hWnd_JoinGameDialog = CreateDialog(hInst,
MAKEINTRESOURCE(IDD_JOINVIEWPLAYERS),
hWnd_Application, (DLGPROC) JoinGameDialogProc);

ShowWindow(hWnd_JoinGameDialog, SW_SHOW);

break;

default:
int count = SendMessage(GetDlgItem(hWnd_LobbyDialog,

IDC_GAMELIST), LB_GETSELCOUNT, 0, 0);

if(count)
{

int sel = SendMessage(GetDlgItem(hWnd_LobbyDialog,
IDC_GAMELIST), LB_GETCURSEL, 0, 0);

}
else
{

EnableWindow(GetDlgItem(hWnd_LobbyDialog,
IDC_JOINGAME), FALSE);

}

break;
}

break;

case WM_CLOSE:
Lobby.Disconnect();
PostQuitMessage(0);
break;

}

return 0;
}

If the player presses the Log Out button, the client disconnects from
the server and hides the lobby window, bringing the login dialog in
front.

case IDC_LOGOUT:
Lobby.Disconnect();

// Hide the lobby
ShowWindow(hWnd_LobbyDialog, SW_HIDE);
// Recreate the login dialog
hWnd_LoginDialog = CreateDialog(hInst,MAKEINTRESOURCE(IDD_LOGINDIALOG),

hWnd_Application,(DLGPROC)LoginDialogProc);
break;

When the player presses the Send Chat Message button, the text
entered in the chat text box is sent to the server in a chat message.
The player’s name is also included in the text.

Tutorial 4 / Creating the Game Lobby 385

case IDC_SENDCHATMESSAGE:
GetWindowText(GetDlgItem(hWnd_LobbyDialog, IDC_CHATMESSAGE), temp, 255);

sprintf(chatMessage, "%s: ", Lobby.GetLocalClient()->nickname);
strcat(chatMessage, temp);

Lobby.SendChat(chatMessage);

SetWindowText(GetDlgItem(hWnd_LobbyDialog, IDC_CHATMESSAGE), "");
break;

When the player presses the Create Game button, the create game dia-
log opens.

case IDC_CREATEGAME:
hWnd_CreateGameDialog = CreateDialog(hInst, MAKEINTRESOURCE

(IDD_CREATEGAME),
hWnd_Application, (DLGPROC) CreateGameDialogProc);

ShowWindow(hWnd_CreateGameDialog, SW_SHOW);
break;

When the player presses the Join Game button, the join game dialog
opens. The selected game is retrieved with a Windows system
function.

case IDC_JOINGAME:
selectedGame = SendMessage(GetDlgItem(hWnd_LobbyDialog, IDC_GAMELIST),

LB_GETCURSEL, 0, 0);

hWnd_JoinGameDialog = CreateDialog(hInst, MAKEINTRESOURCE
(IDD_JOINVIEWPLAYERS), hWnd_Application, (DLGPROC)
JoinGameDialogProc);

ShowWindow(hWnd_JoinGameDialog, SW_SHOW);

break;

WinMain Function

This function is almost the same as before but with a small difference.
This time we run the frame for both sign-in and lobby systems.

int PASCAL WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
TCHAR *pCmdLine, int nCmdShow)

{
int time, oldTime, newTime;

WNDCLASSEX wcl;

// Create our main window
wcl.cbSize = sizeof(WNDCLASSEX);

wcl.hInstance = hInstance;
wcl.lpszClassName = "ArmyWar";

386 Tutorial 4 / Creating the Game Lobby

wcl.lpfnWndProc = ApplicationProc;
wcl.style = 0;

wcl.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wcl.hIconSm = LoadIcon(NULL, IDI_WINLOGO);
wcl.hCursor = LoadCursor(NULL, IDC_ARROW);

wcl.lpszMenuName = NULL;
wcl.cbClsExtra = 0;
wcl.cbWndExtra = 0;

wcl.hbrBackground = (HBRUSH) GetStockObject(LTGRAY_BRUSH);

if(!RegisterClassEx(&wcl)) return 0;

hWnd_Application = CreateWindow(
"ArmyWar",
"ARMY WAR Online 2.0",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
640,
480,
HWND_DESKTOP,
NULL,
hInstance,
NULL
);

// Initialize the network library
if(dreamSock_Initialize() != 0)
{

MessageBox(NULL, "Error initializing Communication Library!",
"Fatal Error", MB_OK);

return 1;
}

ShowWindow(hWnd_Application, nCmdShow);
UpdateWindow(hWnd_Application);

// Set global instance variable
hInst = hInstance;

// Display the login dialog
hWnd_LoginDialog = CreateDialog(hInst, MAKEINTRESOURCE(IDD_LOGINDIALOG),

hWnd_Application, (DLGPROC)LoginDialogProc);

// Create the lobby
hWnd_LobbyDialog = CreateDialog(hInst, MAKEINTRESOURCE(IDD_LOBBYDIALOG),

hWnd_Application, (DLGPROC)LobbyDialogProc);

MSG msg;

Tutorial 4 / Creating the Game Lobby 387

BOOL bMsg = FALSE;

PeekMessage(&msg, NULL, 0, 0, PM_NOREMOVE);

oldTime = dreamSock_GetCurrentSystemTime();

bool done = false;

try
{

while(!done)
{

while(PeekMessage(&msg, NULL, 0, 0, PM_NOREMOVE))
{

if(!GetMessage(&msg, NULL, 0, 0))
{

Lobby.Disconnect();
Signin.Disconnect();
done = true;

}

TranslateMessage(&msg);
DispatchMessage(&msg);

}

do
{

newTime = dreamSock_GetCurrentSystemTime();
time = newTime – oldTime;

} while (time < 1);

// Run lobby and sign-in network
Lobby.RunNetwork(time);
Signin.RunNetwork(time);

// Run the game frame here

oldTime = newTime;
}

}
catch(...)
{

Lobby.Disconnect();
Signin.Disconnect();

LogString("Unknown Exception caught in main loop");

MessageBox(NULL, "Unknown Exception caught in main loop",
"Error", MB_OK | MB_TASKMODAL);

return –1;
}

388 Tutorial 4 / Creating the Game Lobby

return msg.wParam;
}

Here we run the frames for sign-in and lobby:

// Run lobby and sign-in network
Lobby.RunNetwork(time);
Signin.RunNetwork(time);

lobby.cpp File — CLobby Class Methods

Here is the lobby.cpp file. As you can see, it is almost the same as
signin.cpp. This time we will focus only on new and modified functions.

/**/
/* Programming Multiplayer Games */
/* Tutorial game client */
/* Programming: */
/* Teijo Hakala */
/**/

#include "common.h"
#include "resource.h"

//---
// Name: empty()
// Desc:
//---
CLobby::CLobby()
{

networkClient = new dreamClient;
clientList = NULL;
gameAmount = 0;
timeConnecting = 0;

}

//---
// Name: empty()
// Desc:
//---
CLobby::~CLobby()
{

delete networkClient;
}

//---
// Name: empty()
// Desc:
//---
void CLobby::RefreshPlayerList(void)
{

Tutorial 4 / Creating the Game Lobby 389

SendMessage(GetDlgItem(hWnd_LobbyDialog, IDC_PLAYERLIST),
LB_RESETCONTENT, 0, 0);

clientLoginData *list = clientList;

for(; list != NULL; list = list->next)
{

SendMessage(GetDlgItem(hWnd_LobbyDialog, IDC_PLAYERLIST),
LB_ADDSTRING, 0, (LPARAM) list->nickname);

}
}

//---
// Name: empty()
// Desc:
//---
void CLobby::RefreshGameList(void)
{
}

//---
// Name: empty()
// Desc:
//---
void CLobby::RefreshJoinedPlayersList(void)
{
}

//---
// Name: empty()
// Desc:
//---
void CLobby::ReadPackets(void)
{

char data[1400];
struct sockaddr address;

int type;
int ind;
int local;
int ret;
char name[30];

dreamMessage mes;
mes.Init(data, sizeof(data));

while(ret = networkClient->GetPacket(mes.data, &address))
{

mes.SetSize(ret);
mes.BeginReading();

type = mes.ReadByte();

switch(type)

390 Tutorial 4 / Creating the Game Lobby

{
case DREAMSOCK_MES_ADDCLIENT:

local = mes.ReadByte();
ind = mes.ReadByte();
strcpy(name, mes.ReadString());

AddClient(local, ind, name);
break;

case DREAMSOCK_MES_REMOVECLIENT:
ind = mes.ReadByte();

LogString("Got removeclient %d message", ind);

RemoveClient(ind);
break;

case USER_MES_SERVEREXIT:
MessageBox(NULL, "Server disconnected", "Info", MB_OK);
Disconnect();
break;

case USER_MES_LOGIN:
// Skip sequences
mes.ReadShort();
mes.ReadShort();

ret = mes.ReadShort();

LogString("Got lobby login respond %d", ret);

if(ret != LOBBYLOGIN_RESULT_ACCEPTED)
{

MessageBox(NULL, "Nickname or password is not valid",
"Error", MB_OK);

Disconnect();

return;
}

SetWindowText(hWnd_Application, "ARMY WAR Online 2.0 -
connected");

timeConnecting = –1;

ShowWindow(hWnd_LobbyDialog, SW_SHOW);

break;

case USER_MES_CHAT:
// Skip sequences
mes.ReadShort();
mes.ReadShort();

Tutorial 4 / Creating the Game Lobby 391

SendMessage(GetDlgItem(hWnd_LobbyDialog, IDC_CHATLIST),
LB_ADDSTRING, 0, (LPARAM) mes.ReadString());

break;
}

}
}

//---
// Name: empty()
// Desc:
//---
void CLobby::AddClient(int local, int ind, char *name)
{

// First get a pointer to the beginning of client list
clientLoginData *list = clientList;
clientLoginData *prev;

LogString("App: Client: Adding client with index %d", ind);

// No clients yet, adding the first one
if(clientList == NULL)
{

LogString("App: Client: Adding first client");

clientList = (clientLoginData *) calloc(1,
sizeof(clientLoginData));

if(local)
{

LogString("App: Client: This one is local");
localClient = clientList;

}

clientList->index = ind;
strcpy(clientList->nickname, name);
strcpy(clientList->nickname, name);

clientList->next = NULL;
}
else
{

LogString("App: Client: Adding another client");

prev = list;
list = clientList->next;

while(list != NULL)
{

prev = list;
list = list->next;

}

392 Tutorial 4 / Creating the Game Lobby

list = (clientLoginData *) calloc(1, sizeof(clientLoginData));

if(local)
{

LogString("App: Client: This one is local");
localClient = list;

}

list->index = ind;
strcpy(list->nickname, name);

list->next = NULL;

prev->next = list;
}

RefreshPlayerList();

// If we just joined the game, request all the game data
if(local)

RequestGameData();
}

//---
// Name: empty()
// Desc:
//---
void CLobby::RemoveClient(int ind)
{

clientLoginData *list = clientList;
clientLoginData *prev = NULL;
clientLoginData *next = NULL;

for(; list != NULL; list = list->next)
{

if(list->index == ind)
{

if(prev != NULL)
{

prev->next = list->next;
}

break;
}

prev = list;
}

if(list == clientList)
{

if(list)
{

next = list->next;
free(list);

Tutorial 4 / Creating the Game Lobby 393

}

list = NULL;
clientList = next;

}
else
{

if(list)
{

next = list->next;
free(list);

}

list = next;
}

RefreshPlayerList();
}

//---
// Name: empty()
// Desc:
//---
void CLobby::RemoveClients(void)
{

clientLoginData *list = clientList;
clientLoginData *next;

while(list != NULL)
{

if(list)
{

next = list->next;
free(list);

}

list = next;
}

clientList = NULL;
}

//---
// Name: empty()
// Desc:
//---
void CLobby::AddGame(char *name, int ind, bool inProgress)
{
}

//---
// Name: empty()
// Desc:
//---

394 Tutorial 4 / Creating the Game Lobby

void CLobby::RemoveGame(char *name)
{
}

//---
// Name: empty()
// Desc:
//---
void CLobby::RemoveGames(void)
{
}

//---
// Name: empty()
// Desc:
//---
void CLobby::RequestGameData(void)
{

char data[1400];
dreamMessage message;
message.Init(data, sizeof(data));

message.WriteByte(USER_MES_GAMEDATA);
message.AddSequences(networkClient);

networkClient->SendPacket(&message);
}

//---
// Name: empty()
// Desc:
//---
void CLobby::SendChat(char *text)
{

char data[1400];
dreamMessage message;
message.Init(data, sizeof(data));

message.WriteByte(USER_MES_CHAT);
message.AddSequences(networkClient);
message.WriteString(text);

networkClient->SendPacket(&message);
}

//---
// Name: empty()
// Desc:
//---
void CLobby::SendCreateGame(char *gamename)
{

char data[1400];
dreamMessage message;

Tutorial 4 / Creating the Game Lobby 395

message.Init(data, sizeof(data));

message.WriteByte(USER_MES_CREATEGAME);
message.AddSequences(networkClient);
message.WriteString(gamename);

networkClient->SendPacket(&message);
}

//---
// Name: empty()
// Desc:
//---
void CLobby::SendRemoveGame(char *gamename)
{

char data[1400];
dreamMessage message;
message.Init(data, sizeof(data));

message.WriteByte(USER_MES_REMOVEGAME);
message.AddSequences(networkClient);
message.WriteString(gamename);

networkClient->SendPacket(&message);
}

//---
// Name: empty()
// Desc:
//---
void CLobby::SendStartGame(int ind)
{

char data[1400];
dreamMessage message;
message.Init(data, sizeof(data));

message.WriteByte(USER_MES_STARTGAME);
message.AddSequences(networkClient);
message.WriteByte(ind);

networkClient->SendPacket(&message);
}

//---
// Name: empty()
// Desc:
//---
void CLobby::SendKeepAlive(void)
{

char data[1400];
dreamMessage message;
message.Init(data, sizeof(data));

message.WriteByte(USER_MES_KEEPALIVE);

396 Tutorial 4 / Creating the Game Lobby

message.AddSequences(networkClient);

networkClient->SendPacket(&message);
}

//---
// Name: empty()
// Desc:
//---
void CLobby::Connect(char *name, char *password)
{

LogString("CLobby::Connect");

timeConnecting = 0;
SetWindowText(hWnd_Application, "ARMY WAR Online 2.0 - connecting ...");

networkClient->SendConnect(name);

dreamMessage message;
char data[1400];

message.Init(data, sizeof(data));
message.WriteByte(USER_MES_LOGIN); // type
message.AddSequences(networkClient); // sequences
message.WriteString(name); // name
message.WriteString(password); // password

networkClient->SendPacket(&message);
}

//---
// Name: empty()
// Desc:
//---
void CLobby::Disconnect(void)
{

LogString("CLobby::Disconnect");

timeConnecting = –1;
SetWindowText(hWnd_Application, "ARMY WAR Online 2.0");

localClient = NULL;

RemoveClients();
RemoveGames();
networkClient->SendDisconnect();

}

//---
// Name: empty()
// Desc:
//---
void CLobby::RunNetwork(int msec)
{

Tutorial 4 / Creating the Game Lobby 397

if(networkClient->GetConnectionState() == DREAMSOCK_DISCONNECTED)
return;

static int time = 0;
static int keepalive = 0;
time += msec;
keepalive += msec;

if(keepalive > 20000)
{

SendKeepAlive();
keepalive = 0;

}

// If timeconnecting is negative, we are connected or connection failed
if(timeConnecting > –1)

timeConnecting += msec;

if(timeConnecting > 3000)
{

SetWindowText(hWnd_Application, "ARMY WAR Online 2.0");

MessageBox(NULL, "Could not connect", "Connection error", MB_OK);
timeConnecting = –1;

ShowWindow(hWnd_LoginDialog, SW_SHOW);
}

// framerate is too high
if(time < (1000 / 30))

return;

time = 0;

ReadPackets();
}

RefreshPlayerList Function

This function updates the player list whenever called. First, the whole
list is reset, and then it is filled with all the connected players.

void CLobby::RefreshPlayerList(void)
{

SendMessage(GetDlgItem(hWnd_LobbyDialog, IDC_PLAYERLIST),
LB_RESETCONTENT, 0, 0);

clientLoginData *list = clientList;

for(; list != NULL; list = list->next)
{

398 Tutorial 4 / Creating the Game Lobby

SendMessage(GetDlgItem(hWnd_LobbyDialog, IDC_PLAYERLIST),
LB_ADDSTRING, 0, (LPARAM) list->nickname);

}
}

ReadPackets Function

Here is the ReadPackets function once again. The lobby system has
a few of its own messages that we will look at now.

void CLobby::ReadPackets(void)
{

char data[1400];
struct sockaddr address;

int type;
int ind;
int local;
int ret;
char name[30];

dreamMessage mes;
mes.Init(data, sizeof(data));

while(ret = networkClient->GetPacket(mes.data, &address))
{

mes.SetSize(ret);
mes.BeginReading();

type = mes.ReadByte();

switch(type)
{
case DREAMSOCK_MES_ADDCLIENT:

local = mes.ReadByte();
ind = mes.ReadByte();
strcpy(name, mes.ReadString());

AddClient(local, ind, name);
break;

case DREAMSOCK_MES_REMOVECLIENT:
ind = mes.ReadByte();

LogString("Got removeclient %d message", ind);

RemoveClient(ind);
break;

case USER_MES_SERVEREXIT:
MessageBox(NULL, "Server disconnected", "Info", MB_OK);
Disconnect();

Tutorial 4 / Creating the Game Lobby 399

break;

case USER_MES_LOGIN:
// Skip sequences
mes.ReadShort();
mes.ReadShort();

ret = mes.ReadShort();

LogString("Got lobby login respond %d", ret);

if(ret != LOBBYLOGIN_RESULT_ACCEPTED)
{

MessageBox(NULL, "Nickname or password is not
valid", "Error", MB_OK);

Disconnect();

return;
}

SetWindowText(hWnd_Application, "ARMY WAR Online 2.0 -
connected");

timeConnecting = –1;

ShowWindow(hWnd_LobbyDialog, SW_SHOW);

break;

case USER_MES_CHAT:
// Skip sequences
mes.ReadShort();
mes.ReadShort();

SendMessage(GetDlgItem(hWnd_LobbyDialog, IDC_CHATLIST),
LB_ADDSTRING, 0, (LPARAM) mes.ReadString());

break;
}

}
}

If the client receives a login message, we know that the server has pro-
cessed our login request and now we get the result. If it was not
accepted, we disconnect from the server. Otherwise, we show the
lobby dialog and set a new window title that has the text “connected” in
it. The variable timeConnecting is set to –1 to indicate that it
should not be counted anymore. More on this variable later.

case USER_MES_LOGIN:
// Skip sequences
mes.ReadShort();
mes.ReadShort();

400 Tutorial 4 / Creating the Game Lobby

ret = mes.ReadShort();

LogString("Got lobby login respond %d", ret);

if(ret != LOBBYLOGIN_RESULT_ACCEPTED)
{

MessageBox(NULL, "Nickname or password is not valid", "Error",
MB_OK);

Disconnect();

return;
}

SetWindowText(hWnd_Application, "ARMY WAR Online 2.0 - connected");
timeConnecting = –1;

ShowWindow(hWnd_LobbyDialog, SW_SHOW);

break;

Let’s say someone has written something to the chat system, and the
server has sent us the chat message. Here is how we put it up on the
chat window.

case USER_MES_CHAT:
// Skip sequences
mes.ReadShort();
mes.ReadShort();

SendMessage(GetDlgItem(hWnd_LobbyDialog, IDC_CHATLIST), LB_ADDSTRING,
0, (LPARAM) mes.ReadString());

break;

RequestGameData Function

This function sends a “request game data” message to the server.

void CLobby::RequestGameData(void)
{

char data[1400];
dreamMessage message;
message.Init(data, sizeof(data));

message.WriteByte(USER_MES_GAMEDATA);
message.AddSequences(networkClient);

networkClient->SendPacket(&message);
}

Tutorial 4 / Creating the Game Lobby 401

SendChat Function

This function sends a “chat” message to the server.

void CLobby::SendChat(char *text)
{

char data[1400];
dreamMessage message;
message.Init(data, sizeof(data));

message.WriteByte(USER_MES_CHAT);
message.AddSequences(networkClient);
message.WriteString(text);

networkClient->SendPacket(&message);
}

SendCreateGame Function

This function sends a “create game” message to the server.

void CLobby::SendCreateGame(char *gamename)
{

char data[1400];
dreamMessage message;
message.Init(data, sizeof(data));

message.WriteByte(USER_MES_CREATEGAME);
message.AddSequences(networkClient);
message.WriteString(gamename);

networkClient->SendPacket(&message);
}

SendRemoveGame Function

This function sends a “remove game” message to the server.

void CLobby::SendRemoveGame(char *gamename)
{

char data[1400];
dreamMessage message;
message.Init(data, sizeof(data));

message.WriteByte(USER_MES_REMOVEGAME);
message.AddSequences(networkClient);
message.WriteString(gamename);

networkClient->SendPacket(&message);
}

402 Tutorial 4 / Creating the Game Lobby

SendStartGame Function

This function sends a “start game” message to the server.

void CLobby::SendStartGame(int ind)
{

char data[1400];
dreamMessage message;
message.Init(data, sizeof(data));

message.WriteByte(USER_MES_STARTGAME);
message.AddSequences(networkClient);
message.WriteByte(ind);

networkClient->SendPacket(&message);
}

Connect Function

This function connects the lobby server and then sends the login
request right after that. The variable timeConnecting is set to 0, so
the system will start counting how long we have tried to connect.

void CLobby::Connect(char *name, char *password)
{

LogString("CLobby::Connect");

timeConnecting = 0;
SetWindowText(hWnd_Application, "ARMY WAR Online 2.0 - connecting ...");

networkClient->SendConnect(name);

dreamMessage message;
char data[1400];

message.Init(data, sizeof(data));
message.WriteByte(USER_MES_LOGIN); // type
message.AddSequences(networkClient); // sequences
message.WriteString(name); // name
message.WriteString(password); // password

networkClient->SendPacket(&message);
}

Disconnect Function

This function disconnects from the lobby server. Everything is
uninitialized.

void CLobby::Disconnect(void)
{

LogString("CLobby::Disconnect");

Tutorial 4 / Creating the Game Lobby 403

timeConnecting = –1;
SetWindowText(hWnd_Application, "ARMY WAR Online 2.0");

localClient = NULL;

RemoveClients();
RemoveGames();
networkClient->SendDisconnect();

}

RunNetwork Function

This function is run every frame to keep the lobby network running.

void CLobby::RunNetwork(int msec)
{

if(networkClient->GetConnectionState() == DREAMSOCK_DISCONNECTED)
return;

static int time = 0;
static int keepalive = 0;
time += msec;
keepalive += msec;

if(keepalive > 20000)
{

SendKeepAlive();
keepalive = 0;

}

// If timeConnecting is negative, we are connected or connection failed
if(timeConnecting > –1)

timeConnecting += msec;

if(timeConnecting > 3000)
{

SetWindowText(hWnd_Application, "ARMY WAR Online 2.0");

MessageBox(NULL, "Could not connect", "Connection error", MB_OK);
timeConnecting = –1;

ShowWindow(hWnd_LoginDialog, SW_SHOW);
}

// framerate is too high
if(time < (1000 / 30))

return;

time = 0;

ReadPackets();
}

404 Tutorial 4 / Creating the Game Lobby

Here we count how long we have tried to connect to the server. If it
takes longer than it normally should, it probably means that the server
is down or we have the wrong address. In this case, we tell the user
that the client could not connect to the server, and we bring the login
window back up.

// If timeConnecting is negative, we are connected or connection failed
if(timeConnecting > –1)

timeConnecting += msec;

if(timeConnecting > 3000)
{

SetWindowText(hWnd_Application, "ARMY WAR Online 2.0");

MessageBox(NULL, "Could not connect", "Connection error", MB_OK);
timeConnecting = –1;

ShowWindow(hWnd_LoginDialog, SW_SHOW);
}

Unimplemented Functions

There are some functions that cannot be implemented until we have
the game data structure ready. We will implement these functions in
the next tutorial, “Creating Your Online Game.”

void CLobby::RefreshGameList(void)
{
}

void CLobby::RefreshJoinedPlayersList(void)
{
}

void CLobby::AddGame(char *name, int ind, bool inProgress)
{
}

void CLobby::RemoveGame(char *name)
{
}

void CLobby::RemoveGames(void)
{
}

Tutorial 4 / Creating the Game Lobby 405

Lobby Server Code

We now learn how to create the lobby server. It is very similar to the
sign-in server, and so we will only take a look at the new and modified
parts of the code.

lobby.h File

Here we have the lobby.h file, which contains CLobbyServer class. It
works just like CSigninServer.

#ifndef __LOBBY_H__
#define __LOBBY_H__

#define LOBBY_RESULT_ACCEPTED 200
#define LOBBY_RESULT_USERNAMEBAD 201
#define LOBBY_RESULT_PASSWORDBAD 202
#define LOBBY_RESULT_MYSQLERROR 203

class CLobbyServer
{
private:

dreamServer *networkServer;
clientLoginData *clientList;

int gameAmount;

public:
CLobbyServer();
~CLobbyServer();

int InitNetwork(void);
void ShutdownNetwork(void);

void ReadPackets(void);
void SendExitNotification(void);

void AddClient(void);
void RemoveClient(struct sockaddr *address);
void RemoveClients(void);

void AddGame(char *name);
void RemoveGame(char *name);
void RemoveGames(void);

void Frame(int msec);

int GetGameAmount(void) {return gameAmount;}
};

#endif

406 Tutorial 4 / Creating the Game Lobby

There is one new variable that tells us how many games exist at the
moment: int gameAmount;.

network.h File

This file is almost the same as the one in the sign-in tutorial, but now
we have some more message types.

#ifndef NETWORK_H
#define NETWORK_H

#include "dreamSock.h"

#define USER_MES_SERVEREXIT 1
#define USER_MES_LOGIN 2
#define USER_MES_SIGNIN 3
#define USER_MES_CHAT 4
#define USER_MES_CREATEGAME 5
#define USER_MES_REMOVEGAME 6

typedef struct clientLoginData
{

dreamClient *netClient;
clientLoginData *next;

} clientLoginData;

#endif

main.cpp File

This file has so few changes that we will skip right to them. The appli-
cation entry functions (WinMain and main) now initialize both the
sign-in and lobby servers, and run both server’s frames.

CLobbyServer Lobby;
CSigninServer Signin;

...

if(Lobby.InitNetwork() == 1)
{

PostQuitMessage(0);
}

if(Signin.InitNetwork() == 1)
{

PostQuitMessage(0);
}

...

Tutorial 4 / Creating the Game Lobby 407

Lobby.Frame(time);
Signin.Frame(time);

lobby.cpp File — CLobbyServer Class Methods

Here is the lobby.cpp file, which contains the code for CLobbyServer.
Note that the lobby server runs on UDP port 30003.

We will now take a look at the new and modified functions.

/**/
/* Programming Multiplayer Games */
/* Tutorial game server */
/* Programming: */
/* Teijo Hakala */
/**/

#include "common.h"
#include <malloc.h>
#include <mysql++>

//---
// Name: empty()
// Desc:
//---
CLobbyServer::CLobbyServer()
{

networkServer = new dreamServer;

clientList = NULL;

gameAmount = 0;
}

//---
// Name: empty()
// Desc:
//---
CLobbyServer::~CLobbyServer()
{

delete networkServer;
}

//---
// Name: InitNetwork()
// Desc: Initialize network
//---
int CLobbyServer::InitNetwork(void)
{

// Initialize dreamSock and the server
if(dreamSock_Initialize() != 0)
{

LogString("Error initializing Communication Library!");
return 1;

408 Tutorial 4 / Creating the Game Lobby

}

int ret = networkServer->Initialize("", 30003);

if(ret == DREAMSOCK_SERVER_ERROR)
{

#ifdef Win32
char text[64];
sprintf(text, "Could not open server on port %d",

networkServer->GetPort());

MessageBox(NULL, text, "Error", MB_OK);
#else

LogString("Could not open server on port %d",
networkServer->GetPort());

#endif
return 1;

}

return 0;
}

//---
// Name: ShutdownNetwork()
// Desc: Shut down network
//---
void CLobbyServer::ShutdownNetwork(void)
{

LogString("Shutting down lobby server...");

SendExitNotification();
RemoveClients();
RemoveGames();

}

//---
// Name: empty()
// Desc:
//---
void CLobbyServer::ReadPackets(void)
{

char data[1400];

int type;
int ret;

// Some incoming data
char name[30];
char password[50];
char chatter[50];
int respond;
int ind;

struct sockaddr address;

Tutorial 4 / Creating the Game Lobby 409

clientLoginData *clList;

dreamMessage mes;
mes.Init(data, sizeof(data));

// Get the packet from the socket
try
{

while(ret = networkServer->GetPacket(mes.data, &address))
{

mes.SetSize(ret);
mes.BeginReading();

type = mes.ReadByte();

// Check the type of the message
switch(type)
{
case DREAMSOCK_MES_CONNECT:

AddClient();
break;

case DREAMSOCK_MES_DISCONNECT:
RemoveClient(&address);

if(clientList == NULL)
RemoveGames();

break;

case USER_MES_LOGIN:
// Skip sequences
mes.ReadShort();
mes.ReadShort();

strcpy(name, mes.ReadString());
strcpy(password, mes.ReadString());

LogString("Lobby: Player %s logged in", name);

try
{

// -> Create a connection to the database
Connection con("onlinedata", "127.0.0.1");

// -> Create a query object that is bound
// to our connection
Query query = con.query();

// -> Assign the query to that object
query << "SELECT id,firstname,password FROM

playerdata WHERE nickname = \"" <<
name << "\"";

410 Tutorial 4 / Creating the Game Lobby

// -> Store the results from the query
Result res = query.store();

Result::iterator i;
Row row;
i = res.begin();

if(i!=res.end())
{

row = *i;
if(!strcmp(password, row["password"]))
{

// -> Update the 'lastlogin'
// field to current date and time
query << "UPDATE playerdata SET

lastlogin = NULL WHERE
id = " << row["id"];

query.execute();

// -> Set the player to 'online'
query << "UPDATE playerdata SET

online = 1 WHERE id = "
<< row["id"];

query.execute();

// -> Player login successful!
respond = LOBBYLOGIN_RESULT_

ACCEPTED;
}
else
{

// -> Password did not match
respond = LOBBYLOGIN_RESULT_

PASSWORDBAD;
}

}
else
{

// -> Nickname could not be found
respond = LOBBYLOGIN_RESULT_USERNAMEBAD;

}
}
catch (BadQuery er) // handle any connection errors
{

// -> MySQL server not running?
respond = LOBBYLOGIN_RESULT_MYSQLERROR;

}

respond = LOBBY_RESULT_ACCEPTED;

// Find the correct client by comparing addresses
clList = clientList;

for(; clList != NULL; clList = clList->next)

Tutorial 4 / Creating the Game Lobby 411

{
if(memcmp(clList->netClient->

GetSocketAddress(), &address,
sizeof(address)) == 0)

{
clList->netClient->message.Init

(clList->netClient->
message.outgoingData,
sizeof(clList->netClient->
message.outgoingData));

clList->netClient->message.WriteByte
(USER_MES_LOGIN); // type

clList->netClient->message.AddSequences
(clList->netClient); // sequences

clList->netClient->message.WriteShort
(respond); // respond

clList->netClient->SendPacket();

LogString("Sending lobby login
respond");

break;
}

}
break;

case USER_MES_CHAT:
// Skip sequences
mes.ReadShort();
mes.ReadShort();

// Read chat text
strcpy(chatter, mes.ReadString());

// Send the chat text to everybody
for(clList = clientList; clList != NULL; clList =

clList->next)
{

clList->netClient->message.Init(clList->
netClient->message.outgoingData,
sizeof(clList->netClient->
message.outgoingData));

clList->netClient->message.WriteByte
(USER_MES_CHAT); // type

clList->netClient->message.AddSequences
(clList->netClient); // sequences

clList->netClient->message.WriteString
(chatter); // text

}

networkServer->SendPackets();

412 Tutorial 4 / Creating the Game Lobby

break;

case USER_MES_CREATEGAME:
// Skip sequences
mes.ReadShort();
mes.ReadShort();

// Read game name
strcpy(name, mes.ReadString());

AddGame(name);

// Find the correct client by comparing addresses
clList = clientList;

for(; clList != NULL; clList = clList->next)
{

if(memcmp(clList->netClient->
GetSocketAddress(), &address,
sizeof(address)) == 0)

{
ind = clList->netClient->GetIndex();
break;

}
}

// Send to everybody
for(clList = clientList; clList != NULL; clList =

clList->next)
{

clList->netClient->message.Init(clList->
netClient->message.outgoingData,
sizeof(clList->netClient->
message.outgoingData));

clList->netClient->message.WriteByte
(USER_MES_CREATEGAME); // type

clList->netClient->message.AddSequences
(clList->netClient); // sequences

clList->netClient->message.WriteString(name);
// game name
clList->netClient->message.WriteShort(ind);
// host's index
clList->netClient->message.WriteByte(0);
// in progress?

}

networkServer->SendPackets();

break;

case USER_MES_REMOVEGAME:
// Skip sequences
mes.ReadShort();

Tutorial 4 / Creating the Game Lobby 413

mes.ReadShort();

// Read game name
strcpy(name, mes.ReadString());

LogString("REMOVING %s", name);

RemoveGame(name);

// Send to everybody
for(clList = clientList; clList != NULL; clList =

clList->next)
{

clList->netClient->message.Init(clList->
netClient->message.outgoingData,
sizeof(clList->netClient->
message.outgoingData));

clList->netClient->message.WriteByte(USER_
MES_REMOVEGAME); // type

clList->netClient->message.AddSequences
(clList->netClient); // sequences

clList->netClient->message.WriteString(name);
// game name

}

networkServer->SendPackets();

break;
}

}
}
catch(...)
{

LogString("Unknown Exception caught in Lobby ReadPackets loop");

#ifdef Win32
MessageBox(NULL, "Unknown Exception caught in Lobby ReadPackets

loop", "Error", MB_OK | MB_TASKMODAL);
#endif

}
}

//---
// Name: empty()
// Desc:
//---
void CLobbyServer::SendExitNotification(void)
{

clientLoginData *toClient = clientList;

for(; toClient != NULL; toClient = toClient->next)
{

414 Tutorial 4 / Creating the Game Lobby

toClient->netClient->message.Init(toClient->netClient->
message.outgoingData, sizeof(toClient->netClient->
message.outgoingData));

toClient->netClient->message.WriteByte(USER_MES_SERVEREXIT);
// type
toClient->netClient->message.AddSequences(toClient->netClient);
// sequences

}

networkServer->SendPackets();
}

//---
// Name: empty()
// Desc:
//---
void CLobbyServer::AddClient(void)
{

// First get a pointer to the beginning of the client list
clientLoginData *list = clientList;
clientLoginData *prev;
dreamClient *netList = networkServer->GetClientList();

// No clients yet, adding the first one
if(clientList == NULL)
{

LogString("App: Server: Adding first client");

clientList = (clientLoginData *) calloc(1,
sizeof(clientLoginData));

clientList->netClient = netList;

clientList->next = NULL;
}
else
{

LogString("App: Server: Adding another client");

prev = list;
list = clientList->next;
netList = netList->next;

while(list != NULL)
{

prev = list;
list = list->next;
netList = netList->next;

}

list = (clientLoginData *) calloc(1, sizeof(clientLoginData));

Tutorial 4 / Creating the Game Lobby 415

list->netClient = netList;

list->next = NULL;

prev->next = list;
}

}

//---
// Name: empty()
// Desc:
//---
void CLobbyServer::RemoveClient(struct sockaddr *address)
{

clientLoginData *list = clientList;
clientLoginData *prev = NULL;
clientLoginData *next = NULL;

for(; list != NULL; list = list->next)
{

if(memcmp(list->netClient->GetSocketAddress(), address,
sizeof(address)) == 0)

{
if(prev != NULL)
{

prev->next = list->next;
}

break;
}

prev = list;
}

if(list == clientList)
{

if(list)
{

next = list->next;
free(list);

}

list = NULL;
clientList = next;

}
else
{

if(list)
{

next = list->next;
free(list);

}

list = next;

416 Tutorial 4 / Creating the Game Lobby

}
}

//---
// Name: empty()
// Desc:
//---
void CLobbyServer::RemoveClients(void)
{

clientLoginData *list = clientList;
clientLoginData *next;

while(list != NULL)
{

if(list)
{

next = list->next;
free(list);

}

list = next;
}

clientList = NULL;
}

//---
// Name: empty()
// Desc:
//---
void CLobbyServer::AddGame(char *name)
{
}

//---
// Name: empty()
// Desc:
//---
void CLobbyServer::RemoveGame(char *name)
{
}

//---
// Name: empty()
// Desc:
//---
void CLobbyServer::RemoveGames(void)
{
}

//---
// Name: empty()
// Desc:
//---

Tutorial 4 / Creating the Game Lobby 417

void CLobbyServer::Frame(int msec)
{

ReadPackets();
}

ReadPackets Function

This function reads the packets from the lobby clients.

void CLobbyServer::ReadPackets(void)
{

char data[1400];

int type;
int ret;

// Some incoming data
char name[30];
char password[50];
char chatter[50];
int respond;
int ind;

struct sockaddr address;

clientLoginData *clList;

dreamMessage mes;
mes.Init(data, sizeof(data));

// Get the packet from the socket
try
{

while(ret = networkServer->GetPacket(mes.data, &address))
{

mes.SetSize(ret);
mes.BeginReading();

type = mes.ReadByte();

// Check the type of the message
switch(type)
{
case DREAMSOCK_MES_CONNECT:

AddClient();
break;

case DREAMSOCK_MES_DISCONNECT:
RemoveClient(&address);

if(clientList == NULL)
RemoveGames();

418 Tutorial 4 / Creating the Game Lobby

break;

case USER_MES_LOGIN:
// Skip sequences
mes.ReadShort();
mes.ReadShort();

strcpy(name, mes.ReadString());
strcpy(password, mes.ReadString());

LogString("Lobby: Player %s logged in", name);

try
{

// -> Create a connection to the database
Connection con("onlinedata", "127.0.0.1");

// -> Create a query object that is bound
// to our connection
Query query = con.query();

// -> Assign the query to that object
query << "SELECT id,firstname,password FROM

playerdata WHERE nickname = \"" <<
name << "\"";

// -> Store the results from the query
Result res = query.store();

Result::iterator i;
Row row;
i = res.begin();

if(i!=res.end())
{

row = *i;
if(!strcmp(password, row["password"]))
{

// -> Update the 'lastlogin'
// field to current date and time
query << "UPDATE playerdata SET

lastlogin = NULL WHERE
id = " << row["id"];

query.execute();

// -> Set the player to 'online'
query << "UPDATE playerdata SET

online = 1 WHERE id = "
<< row["id"];

query.execute();

// -> Player login successful!
respond = LOBBYLOGIN_RESULT_

ACCEPTED;

Tutorial 4 / Creating the Game Lobby 419

}
else
{

// -> Password did not match
respond = LOBBYLOGIN_RESULT_

PASSWORDBAD;
}

}
else
{

// -> Nickname could not be found
respond = LOBBYLOGIN_RESULT_USERNAMEBAD;

}
}
catch (BadQuery er) // handle any connection errors
{

// -> MySQL server not running?
respond = LOBBYLOGIN_RESULT_MYSQLERROR;

}

// Find the correct client by comparing addresses
clList = clientList;

for(; clList != NULL; clList = clList->next)
{

if(memcmp(clList->netClient->
GetSocketAddress(), &address,
sizeof(address)) == 0)

{
clList->netClient->message.Init(clList->

netClient->message.outgoingData,
sizeof(clList->netClient->
message.outgoingData));

clList->netClient->message.WriteByte
(USER_MES_LOGIN); // type

clList->netClient->message.AddSequences
(clList->netClient); // sequences

clList->netClient->message.WriteShort
(respond); // respond

clList->netClient->SendPacket();

LogString("Sending lobby login
respond");

break;
}

}
break;

case USER_MES_CHAT:
// Skip sequences
mes.ReadShort();

420 Tutorial 4 / Creating the Game Lobby

mes.ReadShort();

// Read chat text
strcpy(chatter, mes.ReadString());

// Send the chat text to everybody
for(clList = clientList; clList != NULL; clList =

clList->next)
{

clList->netClient->message.Init(clList->
netClient->message.outgoingData,
sizeof(clList->netClient->
message.outgoingData));

clList->netClient->message.WriteByte
(USER_MES_CHAT); // type

clList->netClient->message.AddSequences
(clList->netClient); // sequences

clList->netClient->message.WriteString
(chatter); // text

}

networkServer->SendPackets();

break;

case USER_MES_CREATEGAME:
// Skip sequences
mes.ReadShort();
mes.ReadShort();

// Read game name
strcpy(name, mes.ReadString());

AddGame(name);

// Find the correct client by comparing addresses
clList = clientList;

for(; clList != NULL; clList = clList->next)
{

if(memcmp(clList->netClient->
GetSocketAddress(), &address,
sizeof(address)) == 0)

{
ind = clList->netClient->GetIndex();
break;

}
}

// Send to everybody
for(clList = clientList; clList != NULL; clList =

clList->next)
{

Tutorial 4 / Creating the Game Lobby 421

clList->netClient->message.Init(clList->
netClient->message.outgoingData,
sizeof(clList->netClient->
message.outgoingData));

clList->netClient->message.WriteByte(USER_
MES_CREATEGAME); // type

clList->netClient->message.AddSequences
(clList->netClient); // sequences

clList->netClient->message.WriteString(name);
// game name
clList->netClient->message.WriteShort(ind);
// host's index
clList->netClient->message.WriteByte(0);
// in progress?

}

networkServer->SendPackets();

break;

case USER_MES_REMOVEGAME:
// Skip sequences
mes.ReadShort();
mes.ReadShort();

// Read game name
strcpy(name, mes.ReadString());

LogString("REMOVING %s", name);

RemoveGame(name);

// Send to everybody
for(clList = clientList; clList != NULL; clList =

clList->next)
{

clList->netClient->message.Init(clList->
netClient->message.outgoingData,
sizeof(clList->netClient->
message.outgoingData));

clList->netClient->message.WriteByte(USER_
MES_REMOVEGAME); // type

clList->netClient->message.AddSequences
(clList->netClient); // sequences

clList->netClient->message.WriteString(name);
// game name

}

networkServer->SendPackets();

break;
}

422 Tutorial 4 / Creating the Game Lobby

}
}
catch(...)
{

LogString("Unknown Exception caught in Lobby ReadPackets loop");

#ifdef Win32
MessageBox(NULL, "Unknown Exception caught in Lobby ReadPackets

loop", "Error", MB_OK | MB_TASKMODAL);
#endif

}
}

In case of a chat message, we forward the message to every client and
do nothing else.

case USER_MES_CHAT:
// Skip sequences
mes.ReadShort();
mes.ReadShort();

// Read chat text
strcpy(chatter, mes.ReadString());

// Send the chat text to everybody
for(clList = clientList; clList != NULL; clList = clList->next)
{

clList->netClient->message.Init(clList->netClient->
message.outgoingData, sizeof(clList->netClient->
message.outgoingData));

clList->netClient->message.WriteByte(USER_MES_CHAT); // type
clList->netClient->message.AddSequences(clList->netClient);
// sequences
clList->netClient->message.WriteString(chatter); // text

}

networkServer->SendPackets();

break;

If a client sends us the “create game” message, we first create a game
on the server side and then forward the message to every client, so
they can add a game too. We find out the index number of the game cre-
ator, so that player will open a different kind of dialog than the rest
(where he or she can start the game).

case USER_MES_CREATEGAME:
// Skip sequences
mes.ReadShort();
mes.ReadShort();

Tutorial 4 / Creating the Game Lobby 423

// Read game name
strcpy(name, mes.ReadString());

AddGame(name);

// Find the correct client by comparing addresses
clList = clientList;

for(; clList != NULL; clList = clList->next)
{

if(memcmp(clList->netClient->GetSocketAddress(), &address,
sizeof(address)) == 0)

{
ind = clList->netClient->GetIndex();
break;

}
}

// Send to everybody
for(clList = clientList; clList != NULL; clList = clList->next)
{

clList->netClient->message.Init(clList->netClient->
message.outgoingData, sizeof(clList->netClient->
message.outgoingData));

clList->netClient->message.WriteByte(USER_MES_CREATEGAME);
// type
clList->netClient->message.AddSequences(clList->netClient);
// sequences
clList->netClient->message.WriteString(name); // game name
clList->netClient->message.WriteShort(ind); // host's index
clList->netClient->message.WriteByte(0); // in progress?

}

networkServer->SendPackets();

break;

If we get a “remove game” message, the server first removes the game
locally, and then tells the clients about it so they will remove it too.

case USER_MES_REMOVEGAME:
// Skip sequences
mes.ReadShort();
mes.ReadShort();

// Read game name
strcpy(name, mes.ReadString());

LogString("REMOVING %s", name);

RemoveGame(name);

424 Tutorial 4 / Creating the Game Lobby

// Send to everybody
for(clList = clientList; clList != NULL; clList = clList->next)
{

clList->netClient->message.Init(clList->netClient->
message.outgoingData, sizeof(clList->netClient->
message.outgoingData));

clList->netClient->message.WriteByte(USER_MES_REMOVEGAME);
// type
clList->netClient->message.AddSequences(clList->netClient);
// sequences
clList->netClient->message.WriteString(name); // game name

}

networkServer->SendPackets();

break;

Unimplemented Functions

The server also has some unimplemented functions (just like the lobby
client) at this point. These cannot be implemented until we have the
game data structure.

void CLobbyServer::AddGame(char *name)
{
}

void CLobbyServer::RemoveGame(char *name)
{
}

void CLobbyServer::RemoveGames(void)
{
}

Summary

In this tutorial we learned how to create a working game lobby. We
learned how to handle players who are logging in, create games, and
send chat messages. Now we have only one final step to take: making
the actual game. This is covered in the final tutorial, “Creating Your
Online Game.”

Tutorial 4 / Creating the Game Lobby 425

This page intentionally left blank.

Tutorial 5

Creating Your
Online Game

Introduction

This is the last tutorial for our project of creating our very own online
game. In this tutorial we learn how to make our game handle player
input and show the result on the local and remote clients. Basically we
learn how we should send the player movement and other command
data to the other clients. The server will route all the commands to all
the clients, and we can then see the movement of the players and the
flag on our screens. We will also learn how to create a dead reckoning
system (also known as client prediction). This is a method of making
the players move smoothly even when the server is not responding
very quickly.

All the hosts participating in the network game must produce
exactly the same frames. If that is not the case, the server’s frame is
used. But the rule of thumb is that the server and a client always pro-
duce the same frames. Obviously when we send this over the network
to the remote clients, they try their best to match it but cannot do it
perfectly. So when a client moves a remote client’s player on the
screen, it is possible that the result is wrong. In this case, the server
tells us where to put it.

427

Designing the Functionality

There are some methods to make our game work better over a net-
work. These methods should be kept in mind when designing our
game’s network functionality.

Frame Time

All computer games should keep track of the frame time. This is espe-
cially important in a multiplayer game because all the computers could
be running the game at slightly different speeds (depending on how
powerful the computer is). So when we move something in the game
world, we should scale the velocity of the movement with the current
frame time. This way the movement is smooth on every frame, and no
client is moving the objects faster than any other.

Compressing Messages

While there are obviously ways to compress almost any kind of data,
we are not talking about compressing the message byte by byte. Of
course, one could implement that kind of method if required, but the
packets usually are so small that it is not needed (or even useful).

We are talking about delta compression. Delta means change over a
time. For example, if we press a button down now, we need to tell that
to the server only once, right? Why should we send that same informa-
tion every frame when it already knows that the key is pressed down?
Then again, if we release the key now, we need to send that information
to the server. Between pressing down and releasing the key, we do not
need to inform the server about that key in anyway. That is called delta
compression.

Another good example is sending the player coordinates from the
server to a client. Why send them if they have not changed?

Delta compression is achieved by using single bits of a byte (or any
length of data) to tell what is included in a message. This is called flag-
ging, and each bit in the byte is a flag. For example, if the “key” flag is
up, it means that this message contains key data.

Flags are defined in values of power of two. The first one is 1, the
second one is 2, then 4, 8, 16, 32, 64, etc. A byte consists of 8 bits, so it
can have eight of these values. Here are the command flags used in this
tutorial game:

#define CMD_KEY 1
#define CMD_HEADING 2
#define CMD_ORIGIN 4
#define CMD_BULLET 8

428 Tutorial 5 / Creating Your Online Game

#define CMD_FLAG 16
#define CMD_KILL 32

The following code shows how to set the “key” flag up and down:

flags |= CMD_KEY; // Set the flag UP
flags &= ~CMD_KEY; // Set the flag DOWN

The following code shows how to check if a flag is up:

if(flags & CMD_KEY)

So setting a flag up or down is actually setting a bit to 1 or 0. And
because a byte is the smallest amount of data you can send over a net-
work, this is a good way send lots of boolean values in one byte.

Dead Reckoning

Dead reckoning, or client prediction, is an advanced method of scaling
down our required network bandwith. The server does not have to
inform the clients as often as it would have to without dead reckoning.

Dead reckoning is a method used in various places (i.e., not only in
network games), such as aviation. It is used to predict our position at a
given time, using our current position and velocity to calculate it.

Normally when we press a key or do any action in the game, infor-
mation about this is sent to the server, and the server sends it to each
client. When the information reaches the clients, they make the action
happen. Now, as you can imagine, there is a slight delay before the cli-
ents receive that info and make the action happen. There is nothing we
can do about the delay concerning remote clients, but the local client is
a totally different matter. Obviously if we press a key and send it to the
server, we already know that we did it. So why wait for the server to
tell us that?

The idea of dead reckoning is this: When we press a key to make our
player move forward, we send this information to the server, but we
also immediately start to move our player forward on the local machine.
When the server has processed the message and sent us information,
we look at the position where the server thinks the player is, and com-
pare it to what we thought it to be at that time (we have to save the old
results for comparison). If they match, there is no problem. If they do
not match, we obey the server and move the player to the position it
told us. Sometimes this may be seen as player warping — because the
server is always right. Not the client. No matter what people tell you.

When we use dead reckoning, the server does not have to send data
to us as often. We save lots of bandwidth this way, and that is nothing
but a good thing.

Tutorial 5 / Creating Your Online Game 429

Frame History

There is no need to store every frame in the history array. We store
only the last 64 frames. To get the correct index in the array, we use
the following method:

totalFrame & (COMMAND_HISTORY_SIZE–1)

This returns a value from 0 to a maximum of 63 (COMMAND_
HISTORY_SIZE–1).

We use the message sequences as our frame counter, so usually you
will see something like this:

outgoingSequence & (COMMAND_HISTORY_SIZE–1)

Handling Messages

Because we use dead reckoning, we can save some network bandwidth
by making the server send messages in 100 ms (or any other suitable
time) intervals. Why can we do this then? Because the clients will try
to predict the frames during this 100 ms by just moving the objects in
the direction they were moving in the last known frame (using the last
known velocity). But the server must get information about every cli-
ent frame, so all the clients have to send frame data every frame.

The server reads incoming packets every frame, and when it
receives a message containg frame data, it runs the game logic for that
client. So the server is not constantly running the game logic for all the
clients; it only runs it when a frame data message is received. Keeping
in mind that the clients send frame data on every frame, we end up run-
ning the game logic about every frame on the server too. This method
keeps the server and clients in sync, even if the other is running on a
significantly faster computer.

Game Server Code

In contrast to the previous tutorials, here we begin with the server-side
code because it may be a bit easier to understand. And when we know
how the server works, it is easier to understand the client code. So
let’s see how the game server code works. Like before, the basic net-
work communication methods are the same, so we will not focus on
them anymore. We need some new source code files: server.cpp, net-
work.cpp, and server.h. Also, some of the old files have changed a little
bit.

430 Tutorial 5 / Creating Your Online Game

server.h File

This header file contains the application-specific data structures. This
means that the player data structures are here. Also the game’s main
class is located in this file. This class has the network interface meth-
ods that we learned to create in the other tutorials. A CArmyWarServer
object is created each time a new game is created, and this object pro-
cesses that game’s functions.

#ifndef SERVER_H
#define SERVER_H

#include <string.h>

#define NORTH 0
#define NORTHEAST 45
#define EAST 90
#define SOUTHEAST 135
#define SOUTH 180
#define SOUTHWEST 225
#define WEST 270
#define NORTHWEST 315

#define BLUE_TEAM 0
#define RED_TEAM 1

typedef struct
{

float x;
float y;

} VECTOR2D;

typedef struct bullet_t
{

VECTOR2D vel; // Velocity
VECTOR2D origin; // Position

Tutorial 5 / Creating Your Online Game 431

Figure 1

bool shot; // Is the bullet in the air?
int lifetime; // Lifetime in ms

} bullet_t;

typedef struct
{

int key; // Pressed keys
int heading; // Heading

VECTOR2D vel; // Velocity
VECTOR2D origin; // Position

bullet_t bullet; // Bullet

int msec; // How long to run command (in ms)
} command_t;

typedef struct clientData
{

command_t frame[COMMAND_HISTORY_SIZE];
command_t serverFrame;
command_t command;

long processedFrame;

dreamClient *netClient;

VECTOR2D startPos;
bool team;
bool diedThisFrame;

clientData *next;
} clientData;

class CArmyWarServer
{
private:

dreamServer *networkServer;

clientData *clientList; // Client list
int clients; // Number of clients

int realtime; // Real server up-time in ms
int servertime; // Server frame * 100 ms
float frametime; // Frame time in seconds

char gamename[32];
bool inProgress;

bool mapdata[100][100];
int index;

float flagX;

432 Tutorial 5 / Creating Your Online Game

float flagY;
clientData *playerWithFlag;
bool updateFlag;
bool updateKill;

int redScore;
int blueScore;

long framenum;

public:
CArmyWarServer();
~CArmyWarServer();

// Network.cpp
void ReadPackets(void);
void SendCommand(void);
void SendExitNotification(void);
void ReadDeltaMoveCommand(dreamMessage *mes, clientData *client);
void BuildMoveCommand(dreamMessage *mes, clientData *client);
void BuildDeltaMoveCommand(dreamMessage *mes, clientData *client);

// Server.cpp
int InitNetwork(int gameAmount);
void ShutdownNetwork(void);
void GenerateRandomMap(void);
void CalculateVelocity(command_t *command, float frametime);
void CalculateHeading(command_t *command);
void CalculateBulletVelocity(command_t *command);
void MovePlayers(void);
void MovePlayer(clientData *client);
void CheckFlagCollisions(void);

void AddClient(void);
void RemoveClient(struct sockaddr *address);
void RemoveClients(void);
void Frame(int msec);

clientData *GetClientList(void){return clientList;}

void SetName(char *n) {strcpy(gamename, n);}
char *GetName(void) {return gamename;}

void SetInProgress(bool p) {inProgress = p;}
bool GetInProgress(void) {return inProgress;}

void SetIndex(int ind) {index = ind;}
int GetIndex(void) {return index;}

CArmyWarServer *next;
};

#endif

Tutorial 5 / Creating Your Online Game 433

Each frame’s commands are kept in a structure, which is seen below.
All the variables are easy to understand except for one perhaps, and
that is the integer msec. It is basically that frame’s frame time, and
hence it is the length of the command (in milliseconds).

int key; // Pressed keys
int heading; // Heading

VECTOR2D vel; // Velocity
VECTOR2D origin; // Position

bullet_t bullet; // Bullet

int msec; // How long to run command (in ms)

The players’ game-specific data (such as their origin) is stored in the
clientData structure. As you can see, there is more than one com-
mand_t object. One is for the current frame, one is for the last known
server frame, and one is a history of the last 64 frames.

command_t frame[COMMAND_HISTORY_SIZE];
command_t serverFrame;
command_t command;

long processedFrame;

dreamClient *netClient;

VECTOR2D startPos;
bool team;
bool diedThisFrame;

clientData *next;

The command_t frame is an array (history) of the last 64 frames. The
command_t serverFrame is the last known server frame. The com-
mand_t command is the current frame. The long processedFrame
tells us the last frame we have processed. This is a frame history
indexed value (0 to 63).

The dreamClient netClient is a pointer to the dreamClient net-
work client that matches with this player. The VECTOR2D startPos

is the start position for the player. The boolean team is the player’s
team (red = 1 or blue = 0). The boolean diedThisFrame is a flag
that indicates if the player died this frame (used to inform all the clients
which players died during the current frame). The clientData next is a
pointer to the next client.

CArmyWarServer also has some member variables that we should
look at before we move on:

434 Tutorial 5 / Creating Your Online Game

private:
dreamServer *networkServer;

clientData *clientList; // Client list
int clients; // Number of clients

int realtime; // Real server up-time in ms
int servertime; // Server frame * 100 ms
float frametime; // Frame time in seconds

char gamename[32];
bool inProgress;

bool mapdata[100][100];
int index;

float flagX;
float flagY;
clientData *playerWithFlag;
bool updateFlag;
bool updateKill;

int redScore;
int blueScore;

long framenum;

The dreamServer networkServer is the dreamServer network
server object. The clientData clientList is the game-specific client
list holding the players’ data such as their current origin. The integer
clients tells us how many clients have joined this game. The integer
realtime tells us in real time how long this server has been running
(in milliseconds). The integer servertime is used to make each net-
work frame last for 100 milliseconds. The formula for this variable is:
server frame number * 100 ms.

The char gamename stores the game’s name. The boolean
inProgress is a flag that tells us if the game is in progress or not.
The boolean mapdata is an array that holds the map information. If a
node is true, a tree exists in that position. If the value is false, there is
nothing but grass.

The integer index tells us the index number of the game. The
floats flagX and flagY store the flag origin. The clientData
playerWithFlag is a pointer to the player with the flag (if any).

The boolean updateFlag is a flag that is set when the flag infor-
mation should be sent to each client. The boolean updateKill is a
flag that is set when someone dies. This information should be sent to
each client. The integers redScore and blueScore keep track of
the team scores. The long frameNum counts the frames.

Tutorial 5 / Creating Your Online Game 435

network.h File

Here is the final version of the server-side network.h. There are some
new definitions here, such as command history size and the keyboard
commands.

#ifndef NETWORK_H
#define NETWORK_H

#include "dreamSock.h"

#define COMMAND_HISTORY_SIZE 64

#define KEY_UP 1
#define KEY_DOWN 2
#define KEY_LEFT 4
#define KEY_RIGHT 8
#define KEY_WEAPON 16

#define CMD_KEY 1
#define CMD_HEADING 2
#define CMD_ORIGIN 4
#define CMD_BULLET 8
#define CMD_FLAG 16
#define CMD_KILL 32

#define USER_MES_FRAME 1
#define USER_MES_NONDELTAFRAME 2
#define USER_MES_SERVEREXIT 3
#define USER_MES_LOGIN 4
#define USER_MES_SIGNIN 5
#define USER_MES_CHAT 6
#define USER_MES_CREATEGAME 7
#define USER_MES_REMOVEGAME 8
#define USER_MES_GAMEDATA 9
#define USER_MES_STARTGAME 10
#define USER_MES_MAPDATA 11

typedef struct clientLoginData
{

dreamClient *netClient;
clientLoginData *next;

} clientLoginData;

#endif

main.cpp File

The server’s main source code file has not changed much. Only the
application’s main functions (WinMain and main) have something new.
We now run each game’s frame right after the lobby and sign-in frames.
We go through the whole game list and run every game’s frames.

436 Tutorial 5 / Creating Your Online Game

Lobby.Frame(time);
Signin.Frame(time);

CArmyWarServer *list = Lobby.GetGameList();

for(; list != NULL; list = list->next)
{

list->Frame(time);
}

network.cpp File — CArmyWarServer Class Part 1

Network.cpp holds the network part of the CArmyWarServer class.
Here we receive, process, build, and send packets.

/**/
/* Programming Multiplayer Games */
/* Tutorial game server */
/* Programming: */
/* Teijo Hakala */
/**/

#include "common.h"
#include <math.h>

#ifdef Win32
#include <windows.h>
#include <mmsystem.h>
#include <assert.h>
#endif

//---
// Name: InitNetwork()
// Desc: Initialize network
//---
int CArmyWarServer::InitNetwork(int gameAmount)
{

if(dreamSock_Initialize() != 0)
{

LogString("Error initializing Communication Library!");
return 1;

}

LogString("Initializing game %d", gameAmount);

// Create the game servers on new ports, starting from 30004
int ret = networkServer->Initialize("", 30004 + gameAmount);

if(ret == DREAMSOCK_SERVER_ERROR)
{

#ifdef Win32
char text[64];

Tutorial 5 / Creating Your Online Game 437

sprintf(text, "Could not open server on port %d",
networkServer->GetPort());

MessageBox(NULL, text, "Error", MB_OK);
#else

LogString("Could not open server on port %d",
networkServer->GetPort());

#endif
return 1;

}

return 0;
}

//---
// Name: ShutdownNetwork()
// Desc: Shut down network
//---
void CArmyWarServer::ShutdownNetwork(void)
{

LogString("Shutting down game server...");

RemoveClients();

networkServer->Uninitialize();
}

//---
// Name: empty()
// Desc:
//---
void CArmyWarServer::ReadPackets(void)
{

char data[1400];

int type;
int ret;

struct sockaddr address;

clientData *clList;

dreamMessage mes;
mes.Init(data, sizeof(data));

// Get the packet from the socket
try
{

while(ret = networkServer->GetPacket(mes.data, &address))
{

mes.SetSize(ret);
mes.BeginReading();

438 Tutorial 5 / Creating Your Online Game

type = mes.ReadByte();

// Check the type of the message
switch(type)
{
case DREAMSOCK_MES_CONNECT:

AddClient();
break;

case DREAMSOCK_MES_DISCONNECT:
RemoveClient(&address);
break;

case USER_MES_FRAME:
// Skip sequences
mes.ReadShort();
mes.ReadShort();

// Find the correct client by comparing addresses
clList = clientList;

for(; clList != NULL; clList = clList->next)
{

if(memcmp(clList->netClient->
GetSocketAddress(), &address,
sizeof(address)) == 0)

{
ReadDeltaMoveCommand(&mes, clList);
MovePlayer(clList);

break;
}

}

break;

case USER_MES_NONDELTAFRAME:
clList = clientList;
clientData *dataClient;

// Find the correct client by comparing addresses
for(; clList != NULL; clList = clList->next)
{

if(memcmp(clList->netClient->
GetSocketAddress(), &address,
sizeof(address)) == 0)

{
break;

}
}

Tutorial 5 / Creating Your Online Game 439

clList->netClient->message.Init(clList->netClient->
message.outgoingData, sizeof(clList->
netClient->message.outgoingData));

clList->netClient->message.WriteByte(USER_MES_
NONDELTAFRAME);

clList->netClient->message.WriteShort(clList->
netClient->GetOutgoingSequence());

clList->netClient->message.WriteShort(clList->
netClient->GetIncomingSequence());

for(dataClient = clientList; dataClient != NULL;
dataClient = dataClient->next)

{
BuildMoveCommand(&clList->netClient->message,

dataClient);
}

clList->netClient->SendPacket();

break;

case USER_MES_STARTGAME:
// Skip sequences
mes.ReadShort();
mes.ReadShort();

// Send to everybody
for(clList = clientList; clList != NULL; clList =

clList->next)
{

clList->netClient->message.Init(clList->
netClient->message.outgoingData,
sizeof(clList->netClient->
message.outgoingData));

clList->netClient->message.WriteByte(USER_
MES_MAPDATA); // type

clList->netClient->message.AddSequences
(clList->netClient); // sequences

for(int i = 0; i < 100; i++)
{

for(int j = 0; j < 100; j++)
{

if(mapdata[i][j] == true)
{

clList->netClient->
message.WriteByte(i);

clList->netClient->
message.WriteByte(j);

}
}

}

440 Tutorial 5 / Creating Your Online Game

}

networkServer->SendPackets();

// Send to everybody
for(clList = clientList; clList != NULL; clList =

clList->next)
{

clList->netClient->message.Init(clList->
netClient->message.outgoingData,
sizeof(clList->netClient->
message.outgoingData));

clList->netClient->message.WriteByte(USER_
MES_STARTGAME); // type

clList->netClient->message.AddSequences
(clList->netClient); // sequences

}

networkServer->SendPackets();

break;
}

}
}
catch(...)
{

LogString("Unknown Exception caught in Lobby ReadPackets loop");

#ifdef Win32
MessageBox(NULL, "Unknown Exception caught in Lobby ReadPackets

loop", "Error", MB_OK | MB_TASKMODAL);
#endif

}
}

//---
// Name: empty()
// Desc:
//---
void CArmyWarServer::AddClient(void)
{

// First get a pointer to the beginning of the client list
clientData *list = clientList;
clientData *prev;
dreamClient *netList = networkServer->GetClientList();

// No clients yet, adding the first one
if(clientList == NULL)
{

LogString("App: Server: Adding first client");

clientList = (clientData *) calloc(1, sizeof(clientData));

Tutorial 5 / Creating Your Online Game 441

clientList->netClient = netList;

if(clients % 2 == 0)
{

clientList->team = RED_TEAM;

clientList->startPos.x = 46.0f * 32.0f + ((clients/2) *
32.0f);

clientList->startPos.y = 96.0f * 32.0f;
}
else
{

clientList->team = BLUE_TEAM;

clientList->startPos.x = 46.0f * 32.0f + ((clients/2) *
32.0f);

clientList->startPos.y = 4.0f * 32.0f;
}

clientList->command.origin.x = clientList->startPos.x;
clientList->command.origin.y = clientList->startPos.y;

clientList->next = NULL;
}
else
{

LogString("App: Server: Adding another client");

prev = list;
list = clientList->next;
netList = netList->next;

while(list != NULL)
{

prev = list;
list = list->next;
netList = netList->next;

}

list = (clientData *) calloc(1, sizeof(clientData));

list->netClient = netList;

if(clients % 2 == 0)
{

list->team = RED_TEAM;

list->startPos.x = 46.0f * 32.0f + ((clients/2) * 32.0f);
list->startPos.y = 96.0f * 32.0f;

}
else
{

list->team = BLUE_TEAM;

442 Tutorial 5 / Creating Your Online Game

list->startPos.x = 46.0f * 32.0f + ((clients/2) * 32.0f);
list->startPos.y = 4.0f * 32.0f;

}

list->command.origin.x = list->startPos.x;
list->command.origin.y = list->startPos.y;

list->next = NULL;

prev->next = list;
}

clients++;
}

//---
// Name: empty()
// Desc:
//---
void CArmyWarServer::RemoveClient(struct sockaddr *address)
{

clientData *list = clientList;
clientData *prev = NULL;
clientData *next = NULL;

for(; list != NULL; list = list->next)
{

if(memcmp(list->netClient->GetSocketAddress(), address,
sizeof(address)) == 0)

{
if(prev != NULL)
{

prev->next = list->next;
}

break;
}

prev = list;
}

// Drop the flag if player with flag exits the game
if(list == playerWithFlag)
{

playerWithFlag = NULL;
updateFlag = true;

}

if(list == clientList)
{

if(list)
{

next = list->next;
free(list);

Tutorial 5 / Creating Your Online Game 443

}

list = NULL;
clientList = next;

}
else
{

if(list)
{

next = list->next;
free(list);

}

list = next;
}

clients--;
}

//---
// Name: empty()
// Desc:
//---
void CArmyWarServer::RemoveClients(void)
{

clientData *list = clientList;
clientData *next;

while(list != NULL)
{

if(list)
{

next = list->next;
free(list);

}

list = next;
}

clientList = NULL;
clients = 0;

}

//---
// Name: empty()
// Desc:
//---
void CArmyWarServer::SendCommand(void)
{

clientData *toClient;
clientData *dataClient;

// Fill messages
for(toClient = clientList; toClient != NULL; toClient = toClient->next)

444 Tutorial 5 / Creating Your Online Game

{
toClient->netClient->message.Init(toClient->netClient->

message.outgoingData, sizeof(toClient->netClient->
message.outgoingData));

toClient->netClient->message.WriteByte(USER_MES_FRAME); // type
toClient->netClient->message.AddSequences(toClient->netClient);
// sequences

for(dataClient = clientList; dataClient != NULL; dataClient =
dataClient->next)

{
BuildDeltaMoveCommand(&toClient->netClient->message,

dataClient);
}

}

// Send messages to all clients
networkServer->SendPackets();

// Store the sent command in history
for(toClient = clientList; toClient != NULL; toClient = toClient->next)
{

int i = (toClient->netClient->GetOutgoingSequence() – 1) &
(COMMAND_HISTORY_SIZE–1);

memcpy(&toClient->frame[i], &toClient->command,
sizeof(command_t));

}
}

//---
// Name: empty()
// Desc:
//---
void CArmyWarServer::SendExitNotification(void)
{

clientData *toClient = clientList;

for(; toClient != NULL; toClient = toClient->next)
{

toClient->netClient->message.Init(toClient->netClient->
message.outgoingData, sizeof(toClient->netClient->
message.outgoingData));

toClient->netClient->message.WriteByte(USER_MES_SERVEREXIT);
// type
toClient->netClient->message.AddSequences(toClient->netClient);
// sequences

}

networkServer->SendPackets();
}

Tutorial 5 / Creating Your Online Game 445

//---
// Name: empty()
// Desc:
//---
void CArmyWarServer::ReadDeltaMoveCommand(dreamMessage *mes, clientData

*client)
{

int flags = 0;

// Flags
flags = mes->ReadByte();

// Key
if(flags & CMD_KEY)
{

client->command.key = mes->ReadByte();

LogString("Client %d: read CMD_KEY (%d)", client->netClient->
GetIndex(), client->command.key);

}

// Read time to run command
client->command.msec = mes->ReadByte();

}

//---
// Name: empty()
// Desc:
//---
void CArmyWarServer::BuildMoveCommand(dreamMessage *mes, clientData *client)
{

// Add to the message
// Key
mes->WriteByte(client->command.key);

// Heading
mes->WriteShort(client->command.heading);

// Origin
mes->WriteFloat(client->command.origin.x);
mes->WriteFloat(client->command.origin.y);
mes->WriteFloat(client->command.vel.x);
mes->WriteFloat(client->command.vel.y);

mes->WriteFloat(client->command.bullet.origin.x);
mes->WriteFloat(client->command.bullet.origin.y);
mes->WriteFloat(client->command.bullet.vel.x);
mes->WriteFloat(client->command.bullet.vel.y);
mes->WriteShort(client->command.bullet.lifetime);
mes->WriteByte(client->command.bullet.shot);

// Flag & points
if(playerWithFlag)

mes->WriteShort(playerWithFlag->netClient->GetIndex());

446 Tutorial 5 / Creating Your Online Game

else
mes->WriteShort(–1);

mes->WriteFloat(flagX);
mes->WriteFloat(flagY);

mes->WriteByte(redScore);
mes->WriteByte(blueScore);

mes->WriteByte(client->command.msec);
}

//---
// Name: empty()
// Desc:
//---
void CArmyWarServer::BuildDeltaMoveCommand(dreamMessage *mes, clientData

*client)
{

int flags = 0;

int last = (client->netClient->GetOutgoingSequence() – 1) &
(COMMAND_HISTORY_SIZE–1);

// Check what needs to be updated
if(client->frame[last].key != client->command.key)
{

flags |= CMD_KEY;
}

if(client->frame[last].origin.x != client->command.origin.x ||
client->frame[last].origin.y != client->command.origin.y)

{
flags |= CMD_ORIGIN;

}

if(client->command.bullet.shot)
{

if(client->frame[last].bullet.origin.x != client->
command.bullet.origin.x ||

client->frame[last].bullet.origin.y != client->
command.bullet.origin.y)

{
flags |= CMD_BULLET;

}
}

if(client->frame[last].bullet.shot != client->command.bullet.shot)
{

flags |= CMD_BULLET;
}

if(updateFlag == true)
{

Tutorial 5 / Creating Your Online Game 447

flags |= CMD_FLAG;
}

if(updateKill == true)
{

flags |= CMD_KILL;
}

// Add to the message
// Flags
mes->WriteByte(flags);

// Key
if(flags & CMD_KEY)
{

mes->WriteByte(client->command.key);
}

if(flags & CMD_ORIGIN || flags & CMD_BULLET)
{

mes->WriteByte(client->processedFrame &
(COMMAND_HISTORY_SIZE–1));

}

// Origin
if(flags & CMD_ORIGIN)
{

mes->WriteFloat(client->command.origin.x);
mes->WriteFloat(client->command.origin.y);

mes->WriteFloat(client->command.vel.x);
mes->WriteFloat(client->command.vel.y);

}

// Origin
if(flags & CMD_BULLET)
{

mes->WriteFloat(client->command.bullet.origin.x);
mes->WriteFloat(client->command.bullet.origin.y);

mes->WriteFloat(client->command.bullet.vel.x);
mes->WriteFloat(client->command.bullet.vel.y);

mes->WriteByte(client->command.bullet.shot);
}

// Flag & points
if(flags & CMD_FLAG)
{

if(playerWithFlag)
mes->WriteShort(playerWithFlag->netClient->GetIndex());

else

448 Tutorial 5 / Creating Your Online Game

mes->WriteShort(0);

mes->WriteFloat(flagX);
mes->WriteFloat(flagY);

mes->WriteByte(redScore);
mes->WriteByte(blueScore);

}

// Someone died
if(flags & CMD_KILL)
{

mes->WriteByte(client->diedThisFrame);
}

mes->WriteByte(client->command.msec);
}

InitNetwork Function

This function has only one thing different from the previous implemen-
tations — the port number and the way we choose it. Every created
game opens its own port, and we start from port 30004. The next game
would open port number 30005 and the next one 30006 and so on.

// Create the game servers on new ports, starting from 30004
int ret = networkServer->Initialize("", 30004 + gameAmount);

ReadPackets Function

If a “frame” message is received from a client, the commands are read
using the ReadDeltaMoveCommand function. The commands are
delta-compressed, meaning only the values that have changed are
included in the packet. Once the commands are read, they are put into
action by running the MovePlayer function.

case USER_MES_FRAME:
// Skip sequences
mes.ReadShort();
mes.ReadShort();

// Find the correct client by comparing addresses
clList = clientList;

for(; clList != NULL; clList = clList->next)
{

if(memcmp(clList->netClient->GetSocketAddress(), &address,
sizeof(address)) == 0)

{
ReadDeltaMoveCommand(&mes, clList);
MovePlayer(clList);

break;

Tutorial 5 / Creating Your Online Game 449

}
}

break;

If we received a “non-delta frame” message, it means that a client
wants us to send it the current absolute values of the game. The
BuildMoveCommand function is used to send the absolute values.

case USER_MES_NONDELTAFRAME:
clList = clientList;
clientData *dataClient;

// Find the correct client by comparing addresses
for(; clList != NULL; clList = clList->next)
{

if(memcmp(clList->netClient->GetSocketAddress(), &address,
sizeof(address)) == 0)

{
break;

}
}

clList->netClient->message.Init(clList->netClient->message.outgoingData,
sizeof(clList->netClient->message.outgoingData));

clList->netClient->message.WriteByte(USER_MES_NONDELTAFRAME);
clList->netClient->message.WriteShort(clList->netClient->

GetOutgoingSequence());
clList->netClient->message.WriteShort(clList->netClient->

GetIncomingSequence());

for(dataClient = clientList; dataClient != NULL; dataClient =
dataClient->next)

{
BuildMoveCommand(&clList->netClient->message, dataClient);

}

clList->netClient->SendPacket();

break;

Receiving a “start game” message means that the game host wants to
start the game. We send the map data to each client and inform them to
start the game.

case USER_MES_STARTGAME:
// Skip sequences
mes.ReadShort();
mes.ReadShort();

// Send to everybody
for(clList = clientList; clList != NULL; clList = clList->next)

450 Tutorial 5 / Creating Your Online Game

{
clList->netClient->message.Init(clList->netClient->

message.outgoingData, sizeof(clList->netClient->
message.outgoingData));

clList->netClient->message.WriteByte(USER_MES_MAPDATA); // type
clList->netClient->message.AddSequences(clList->netClient);
// sequences

for(int i = 0; i < 100; i++)
{

for(int j = 0; j < 100; j++)
{

if(mapdata[i][j] == true)
{

clList->netClient->message.WriteByte(i);
clList->netClient->message.WriteByte(j);

}
}

}
}

networkServer->SendPackets();

// Send to everybody
for(clList = clientList; clList != NULL; clList = clList->next)
{

clList->netClient->message.Init(clList->netClient->
message.outgoingData, sizeof(clList->netClient->
message.outgoingData));

clList->netClient->message.WriteByte(USER_MES_STARTGAME); // type
clList->netClient->message.AddSequences(clList->netClient);
// sequences

}

networkServer->SendPackets();

break;

SendCommand Function

This function sends the current commands to each client. The com-
mands are then stored in frame history.

void CArmyWarServer::SendCommand(void)
{

clientData *toClient;
clientData *dataClient;

// Fill messages
for(toClient = clientList; toClient != NULL; toClient = toClient->next)
{

Tutorial 5 / Creating Your Online Game 451

toClient->netClient->message.Init(toClient->netClient->
message.outgoingData, sizeof(toClient->netClient->
message.outgoingData));

toClient->netClient->message.WriteByte(USER_MES_FRAME); // type
toClient->netClient->message.AddSequences(toClient->netClient);
// sequences

for(dataClient = clientList; dataClient != NULL; dataClient =
dataClient->next)

{
BuildDeltaMoveCommand(&toClient->netClient->message,

dataClient);
}

}

// Send messages to all clients
networkServer->SendPackets();

// Store the sent command in history
for(toClient = clientList; toClient != NULL; toClient = toClient->next)
{

int i = (toClient->netClient->GetOutgoingSequence() – 1) &
(COMMAND_HISTORY_SIZE–1);

memcpy(&toClient->frame[i], &toClient->command,
sizeof(command_t));

}
}

ReadDeltaMoveCommand Function

This function reads a delta-compressed command from a client. A client
only sends information about keypresses.

void CArmyWarServer::ReadDeltaMoveCommand(dreamMessage *mes, clientData
*client)

{
int flags = 0;

// Flags
flags = mes->ReadByte();

// Key
if(flags & CMD_KEY)
{

client->command.key = mes->ReadByte();

LogString("Client %d: read CMD_KEY (%d)",
client->netClient->GetIndex(), client->command.key);

}

452 Tutorial 5 / Creating Your Online Game

// Read time to run command
client->command.msec = mes->ReadByte();

}

The function takes two parameters (dreamMessage *mes and
clientData *client). The first one is a pointer to the message to
read, and the second one is a pointer to the client that owns this
message.

We first read the flags byte, which is always there. Depending on the
value of this byte, we read the key command. Finally, we read the frame
time of this command.

BuildMoveCommand Function

This function builds a non-delta-compressed command message for a
client.

void CArmyWarServer::BuildMoveCommand(dreamMessage *mes, clientData *client)
{

// Add to the message
// Key
mes->WriteByte(client->command.key);

// Heading
mes->WriteShort(client->command.heading);

// Origin
mes->WriteFloat(client->command.origin.x);
mes->WriteFloat(client->command.origin.y);
mes->WriteFloat(client->command.vel.x);
mes->WriteFloat(client->command.vel.y);

mes->WriteFloat(client->command.bullet.origin.x);
mes->WriteFloat(client->command.bullet.origin.y);
mes->WriteFloat(client->command.bullet.vel.x);
mes->WriteFloat(client->command.bullet.vel.y);
mes->WriteShort(client->command.bullet.lifetime);
mes->WriteByte(client->command.bullet.shot);

// Flag & points
if(playerWithFlag)

mes->WriteShort(playerWithFlag->netClient->GetIndex());
else

mes->WriteShort(–1);

mes->WriteFloat(flagX);
mes->WriteFloat(flagY);

mes->WriteByte(redScore);
mes->WriteByte(blueScore);

mes->WriteByte(client->command.msec);
}

Tutorial 5 / Creating Your Online Game 453

The function takes two parameters (dreamMessage *mes and
clientData *client). The first one is a pointer to the message to
write to, and the second is a pointer to the client that owns the mes-
sage. The current status of each important variable is written to the
message and sent to the client.

BuildDeltaMoveCommand Function

This function builds a delta-compressed command message for a client.

void CArmyWarServer::BuildDeltaMoveCommand(dreamMessage *mes, clientData
*client)

{
int flags = 0;

int last = (client->netClient->GetOutgoingSequence() – 1) &
(COMMAND_HISTORY_SIZE–1);

// Check what needs to be updated
if(client->frame[last].key != client->command.key)
{

flags |= CMD_KEY;
}

if(client->frame[last].origin.x != client->command.origin.x ||
client->frame[last].origin.y != client->command.origin.y)

{
flags |= CMD_ORIGIN;

}

if(client->command.bullet.shot)
{

if(client->frame[last].bullet.origin.x !=
client->command.bullet.origin.x ||
client->frame[last].bullet.origin.y !=
client->command.bullet.origin.y)

{
flags |= CMD_BULLET;

}
}

if(client->frame[last].bullet.shot != client->command.bullet.shot)
{

flags |= CMD_BULLET;
}

if(updateFlag == true)
{

flags |= CMD_FLAG;
}

if(updateKill == true)
{

454 Tutorial 5 / Creating Your Online Game

flags |= CMD_KILL;
}

// Add to the message
// Flags
mes->WriteByte(flags);

// Key
if(flags & CMD_KEY)
{

mes->WriteByte(client->command.key);
}

if(flags & CMD_ORIGIN || flags & CMD_BULLET)
{

mes->WriteByte(client->processedFrame &
(COMMAND_HISTORY_SIZE–1));

}

// Origin
if(flags & CMD_ORIGIN)
{

mes->WriteFloat(client->command.origin.x);
mes->WriteFloat(client->command.origin.y);

mes->WriteFloat(client->command.vel.x);
mes->WriteFloat(client->command.vel.y);

}

// Origin
if(flags & CMD_BULLET)
{

mes->WriteFloat(client->command.bullet.origin.x);
mes->WriteFloat(client->command.bullet.origin.y);

mes->WriteFloat(client->command.bullet.vel.x);
mes->WriteFloat(client->command.bullet.vel.y);

mes->WriteByte(client->command.bullet.shot);
}

// Flag & points
if(flags & CMD_FLAG)
{

if(playerWithFlag)
mes->WriteShort(playerWithFlag->netClient->GetIndex());

else
mes->WriteShort(0);

mes->WriteFloat(flagX);
mes->WriteFloat(flagY);

mes->WriteByte(redScore);

Tutorial 5 / Creating Your Online Game 455

mes->WriteByte(blueScore);
}

// Someone died
if(flags & CMD_KILL)
{

mes->WriteByte(client->diedThisFrame);
}

mes->WriteByte(client->command.msec);
}

The function takes two parameters (dreamMessage *mes and
clientData *client). The first one is a pointer to the message to
write to, and the second is a pointer to the client that owns the
message.

First we check what has changed since the last frame and set the
correct flags:

int flags = 0;

int last = (client->netClient->GetOutgoingSequence() – 1) &
(COMMAND_HISTORY_SIZE–1);

// Check what needs to be updated
if(client->frame[last].key != client->command.key)
{

flags |= CMD_KEY;
}

if(client->frame[last].origin.x != client->command.origin.x ||
client->frame[last].origin.y != client->command.origin.y)

{
flags |= CMD_ORIGIN;

}

if(client->command.bullet.shot)
{

if(client->frame[last].bullet.origin.x !=
client->command.bullet.origin.x ||

client->frame[last].bullet.origin.y != client->command.bullet.origin.y)
{

flags |= CMD_BULLET;
}

}

if(client->frame[last].bullet.shot != client->command.bullet.shot)
{

flags |= CMD_BULLET;
}

if(updateFlag == true)
{

flags |= CMD_FLAG;

456 Tutorial 5 / Creating Your Online Game

}

if(updateKill == true)
{

flags |= CMD_KILL;
}

We write the flags to the message and then we add the changed values
to the message by checking which flags are up:

// Add to the message
// Flags
mes->WriteByte(flags);

// Key
if(flags & CMD_KEY)
{

mes->WriteByte(client->command.key);
}

if(flags & CMD_ORIGIN || flags & CMD_BULLET)
{

mes->WriteByte(client->processedFrame & (COMMAND_HISTORY_SIZE–1));
}

// Origin
if(flags & CMD_ORIGIN)
{

mes->WriteFloat(client->command.origin.x);
mes->WriteFloat(client->command.origin.y);

mes->WriteFloat(client->command.vel.x);
mes->WriteFloat(client->command.vel.y);

}

// Origin
if(flags & CMD_BULLET)
{

mes->WriteFloat(client->command.bullet.origin.x);
mes->WriteFloat(client->command.bullet.origin.y);

mes->WriteFloat(client->command.bullet.vel.x);
mes->WriteFloat(client->command.bullet.vel.y);

mes->WriteByte(client->command.bullet.shot);
}

// Flag & points
if(flags & CMD_FLAG)
{

if(playerWithFlag)
mes->WriteShort(playerWithFlag->netClient->GetIndex());

else
mes->WriteShort(0);

Tutorial 5 / Creating Your Online Game 457

mes->WriteFloat(flagX);
mes->WriteFloat(flagY);

mes->WriteByte(redScore);
mes->WriteByte(blueScore);

}

// Someone died
if(flags & CMD_KILL)
{

mes->WriteByte(client->diedThisFrame);
}

mes->WriteByte(client->command.msec);

server.cpp File — CArmyWarServer Class Part 2

This file contains the last part of the CArmyWarServer class. This part
is the logic part where we process the commands.

/**/
/* Programming Multiplayer Games */
/* Tutorial game server */
/* Programming: */
/* Teijo Hakala */
/**/

#include "common.h"
#include <fstream>
#include <math.h>
#include <malloc.h>
#include <stdlib.h>

//---
// Name: empty()
// Desc:
//---
float VectorLength(VECTOR2D *vec)
{

return (float) sqrt(vec->x*vec->x + vec->y*vec->y);
}

//---
// Name: empty()
// Desc:
//---
VECTOR2D VectorSubtract(VECTOR2D *vec1, VECTOR2D *vec2)
{

VECTOR2D vec;

vec.x = vec1->x – vec2->x;
vec.y = vec1->y – vec2->y;

458 Tutorial 5 / Creating Your Online Game

return vec;
}

//---
// Name: empty()
// Desc:
//---
CArmyWarServer::CArmyWarServer()
{

networkServer = new dreamServer;

clientList = NULL;
clients = 0;

realtime = 0;
servertime = 0;

inProgress = false;

index = 0;
next = NULL;

flagX = 0.0f;
flagY = 0.0f;
playerWithFlag = NULL;
updateFlag = false;

redScore = 0;
blueScore = 0;

framenum = 0;
}

//---
// Name: empty()
// Desc:
//---
CArmyWarServer::~CArmyWarServer()
{

delete networkServer;
}

//---
// Name: empty()
// Desc:
//---
void CArmyWarServer::GenerateRandomMap(void)
{

// Make all land passable
for(int i = 0; i < 100; i++)
{

for(int j = 0; j < 100; j++)
{

mapdata[i][j] = false;

Tutorial 5 / Creating Your Online Game 459

}
}

// Use the game's index number for random seed
srand(index);

// Place some random trees (avoiding the players’ start locations)
for(int m = 0; m < 300; m++)
{

mapdata[rand()%100][(rand()%80)+10] = true;
}

// Set the flag position
flagX = 49*32;
flagY = 49*32;

playerWithFlag = NULL;
}

//---
// Name: empty()
// Desc:
//---
void CArmyWarServer::CalculateVelocity(command_t *command, float frametime)
{

int checkX;
int checkY;

float multiplier = 100.0f;

command->vel.x = 0.0f;
command->vel.y = 0.0f;

if(command->key & KEY_UP)
{

checkX = (int) (command->origin.x/32.0f);
checkY = (int) ((command->origin.y – multiplier * frametime) /

32.0f);

if(mapdata[checkX][checkY] == false)
command->vel.y += –multiplier * frametime;

}

if(command->key & KEY_DOWN)
{

checkX = (int) (command->origin.x / 32.0f);
checkY = (int) ((command->origin.y + multiplier * frametime) /

32.0f);

if(mapdata[checkX][checkY] == false)
command->vel.y += multiplier * frametime;

}

if(command->key & KEY_LEFT)

460 Tutorial 5 / Creating Your Online Game

{
checkX = (int) ((command->origin.x – multiplier * frametime) /

32.0f);
checkY = (int) (command->origin.y / 32.0f);

if(mapdata[checkX][checkY] == false)
command->vel.x += –multiplier * frametime;

}

if(command->key & KEY_RIGHT)
{

checkX = (int) ((command->origin.x + multiplier * frametime) /
32.0f);

checkY = (int) (command->origin.y / 32.0f);

if(mapdata[checkX][checkY] == false)
command->vel.x += multiplier * frametime;

}
}

//---
// Name: empty()
// Desc:
//---
void CArmyWarServer::CalculateHeading(command_t *command)
{

// Right
if((command->vel.x > 0.0f) &&

(command->vel.y == 0.0f))
{

command->heading = EAST;
}

// Left
if((command->vel.x < 0.0f) &&

(command->vel.y == 0.0f))
{

command->heading = WEST;
}

// Down
if((command->vel.y > 0.0f) &&

(command->vel.x == 0.0f))
{

command->heading = SOUTH;
}

// Up
if((command->vel.y < 0.0f) &&

(command->vel.x == 0.0f))
{

command->heading = NORTH;
}

Tutorial 5 / Creating Your Online Game 461

// Down-Right
if((command->vel.x > 0.0f) &&

(command->vel.y > 0.0f))
{

command->heading = SOUTHEAST;
}

// Up-Right
if((command->vel.x > 0.0f) &&

(command->vel.y < 0.0f))
{

command->heading = NORTHEAST;
}

// Down-Left
if((command->vel.x < 0.0f) &&

(command->vel.y > 0.0f))
{

command->heading = SOUTHWEST;
}

// Up-Left
if((command->vel.x < 0.0f) &&

(command->vel.y < 0.0f))
{

command->heading = NORTHWEST;
}

}

//---
// Name: empty()
// Desc:
//---
void CArmyWarServer::CalculateBulletVelocity(command_t *command)
{

command->bullet.shot = true;

if(command->heading == NORTH)
{

command->bullet.vel.x = 0.0f;
command->bullet.vel.y = –200.0f;

}
if(command->heading == SOUTH)
{

command->bullet.vel.x = 0.0f;
command->bullet.vel.y = 200.0f;

}
if(command->heading == EAST)
{

command->bullet.vel.x = 200.0f;
command->bullet.vel.y = 0.0f;

}
if(command->heading == WEST)
{

462 Tutorial 5 / Creating Your Online Game

command->bullet.vel.x = –200.0f;
command->bullet.vel.y = 0.0f;

}

if(command->heading == NORTHEAST)
{

command->bullet.vel.x = 200.0f;
command->bullet.vel.y = –200.0f;

}
if(command->heading == NORTHWEST)
{

command->bullet.vel.x = –200.0f;
command->bullet.vel.y = –200.0f;

}
if(command->heading == SOUTHEAST)
{

command->bullet.vel.x = 200.0f;
command->bullet.vel.y = 200.0f;

}
if(command->heading == SOUTHWEST)
{

command->bullet.vel.x = –200.0f;
command->bullet.vel.y = 200.0f;

}
}

//---
// Name: empty()
// Desc:
//---
void CArmyWarServer::MovePlayer(clientData *client)
{

float clientFrametime;

float multiplier = 100.0f;

clientFrametime = client->command.msec / 1000.0f;;

CalculateVelocity(&client->command, clientFrametime);
CalculateHeading(&client->command);

// Move the client based on the commands
client->command.origin.x += client->command.vel.x;
client->command.origin.y += client->command.vel.y;

// Bullet
if(client->command.bullet.shot == false)
{

client->command.bullet.origin.x = client->command.origin.x;
client->command.bullet.origin.y = client->command.origin.y;

}
else
{

Tutorial 5 / Creating Your Online Game 463

client->command.bullet.lifetime += (int) (clientFrametime *
1000.0f);

if(client->command.bullet.lifetime > 2000)
{

client->command.bullet.shot = false;
client->command.bullet.lifetime = 0;

client->command.bullet.origin.x = client->command.origin.x;
client->command.bullet.origin.y = client->command.origin.y;

}
}

if(client->command.key & KEY_WEAPON && client->command.bullet.shot ==
false)

{
CalculateBulletVelocity(&client->command);

}

if(client->command.bullet.shot)
{

client->command.bullet.origin.x += client->command.bullet.vel.x
* clientFrametime;

client->command.bullet.origin.y += client->command.bullet.vel.y
* clientFrametime;

}

// Check for bullet hits
if(client->command.bullet.shot)
{

for(clientData *client2 = clientList; client2 != NULL; client2 =
client2->next)

{
if(client == client2)

continue;

client2->diedThisFrame = false;

VECTOR2D pos = client2->command.origin;
pos.x += 16.0f;
pos.y += 16.0f;

VECTOR2D vec = VectorSubtract(&client->
command.bullet.origin, &pos);

float distance = VectorLength(&vec);

if(distance < 16.0f)
{

// Player dies
client2->command.origin.x = client2->startPos.x;
client2->command.origin.y = client2->startPos.y;
client2->diedThisFrame = true;

if(client2 == playerWithFlag)

464 Tutorial 5 / Creating Your Online Game

{
playerWithFlag = NULL;
updateFlag = true;

}

updateKill = true;

client->command.bullet.shot = false;

break;
}

}
}

int f = client->netClient->GetIncomingSequence() &
(COMMAND_HISTORY_SIZE–1);

client->processedFrame = f;
}

//---
// Name: empty()
// Desc:
//---
void CArmyWarServer::CheckFlagCollisions(void)
{

if(playerWithFlag != NULL)
{

// Move the flag with the player
flagX = playerWithFlag->command.origin.x;
flagY = playerWithFlag->command.origin.y;

// Check if the player is at home base
if((playerWithFlag) && (playerWithFlag->team == BLUE_TEAM))
{

if(playerWithFlag->command.origin.x+16 > (49*32) &&
playerWithFlag->command.origin.x+16 < (50*32) &&
playerWithFlag->command.origin.y+16 > (3*32) &&
playerWithFlag->command.origin.y+16 < (4*32))

{
flagX = 49*32;
flagY = 49*32;
playerWithFlag = NULL;
blueScore++;

updateFlag = true;
}

}
if((playerWithFlag) && (playerWithFlag->team == RED_TEAM))
{

if(playerWithFlag->command.origin.x+16 > (49*32) &&
playerWithFlag->command.origin.x+16 < (50*32) &&
playerWithFlag->command.origin.y+16 > (97*32) &&
playerWithFlag->command.origin.y+16 < (98*32))

{

Tutorial 5 / Creating Your Online Game 465

flagX = 49*32;
flagY = 49*32;
playerWithFlag = NULL;
redScore++;

updateFlag = true;
}

}
}
else
{

// Check if anyone is in contact with the flag
clientData *list = clientList;

for(; list != NULL; list = list->next)
{

if(list->command.origin.x+16 > flagX && list->
command.origin.x+16 < flagX+32 &&
list->command.origin.y+16 > flagY && list->
command.origin.y+16 < flagY+32)

{
char team[10];

if(list->team == RED_TEAM)
strcpy(team, "RED team");

else
strcpy(team, "BLUE team");

LogString("FLAG hit : player %d: %s, %s", list->
netClient->GetIndex(), list->netClient->
GetName(), team);

playerWithFlag = list;

updateFlag = true;
return;

}
}

}
}

//---
// Name: empty()
// Desc:
//---
void CArmyWarServer::Frame(int msec)
{

realtime += msec;
frametime = msec / 1000.0f;

// Read packets from clients
ReadPackets();

if(inProgress == false)

466 Tutorial 5 / Creating Your Online Game

return;

// Check if someone hit the flag
CheckFlagCollisions();

// Wait full 100 ms before allowing to send
if(realtime < servertime)
{

// never let the time get too far off
if(servertime – realtime > 100)
{

realtime = servertime – 100;
}

return;
}

// Bump frame number, and calculate new servertime
framenum++;
servertime = framenum * 100;

if(servertime < realtime)
realtime = servertime;

SendCommand();

// Reset update flags
updateFlag = false;
updateKill = false;

}

GenerateRandomMap Function

Here we generate the map by randomizing the tree positions. This is
slightly controlled by setting the game index number as the random
seed. The original idea was to randomize exactly the same map on each
client by using the same random seed, but it seems that the Unix and
Windows random seeds are not always compatible. So the map data
must be sent over the network to the clients (shown in the Read-
Packets function).

void CArmyWarServer::GenerateRandomMap(void)
{

// Make all land passable
for(int i = 0; i < 100; i++)
{

for(int j = 0; j < 100; j++)
{

mapdata[i][j] = false;
}

}

// Use the game's index number for random seed

Tutorial 5 / Creating Your Online Game 467

srand(index);

// Place some random trees (avoiding the players’ start locations)
for(int m = 0; m < 300; m++)
{

mapdata[rand()%100][(rand()%80)+10] = true;
}

// Set the flag position
flagX = 49*32;
flagY = 49*32;

playerWithFlag = NULL;
}

CalculateVelocity Function

This function calculates the velocity on a given command and frame
time.

void CArmyWarServer::CalculateVelocity(command_t *command, float frametime)
{

int checkX;
int checkY;

float multiplier = 100.0f;

command->vel.x = 0.0f;
command->vel.y = 0.0f;

if(command->key & KEY_UP)
{

checkX = (int) (command->origin.x / 32.0f);
checkY = (int) ((command->origin.y – multiplier * frametime) /

32.0f);

if(mapdata[checkX][checkY] == false)
command->vel.y += –multiplier * frametime;

}

if(command->key & KEY_DOWN)
{

checkX = (int) (command->origin.x / 32.0f);
checkY = (int) ((command->origin.y + multiplier * frametime) /

32.0f);

if(mapdata[checkX][checkY] == false)
command->vel.y += multiplier * frametime;

}

if(command->key & KEY_LEFT)
{

checkX = (int) ((command->origin.x – multiplier * frametime) /
32.0f);

468 Tutorial 5 / Creating Your Online Game

checkY = (int) (command->origin.y / 32.0f);

if(mapdata[checkX][checkY] == false)
command->vel.x += –multiplier * frametime;

}

if(command->key & KEY_RIGHT)
{

checkX = (int) ((command->origin.x + multiplier * frametime) /
32.0f);

checkY = (int) (command->origin.y / 32.0f);

if(mapdata[checkX][checkY] == false)
command->vel.x += multiplier * frametime;

}
}

The function takes two parameters (command_t *command and
float frametime). The first one is a pointer to the command to
use, and the second one is the frame time value. The velocity is calcu-
lated based on the command and frame time, but we also check if we
are colliding with a tree.

We first calculate the new position to which the object would move
after the command commences. If a tree exists in that position, we do
nothing and the object does not move (it collides with the tree). If there
is no tree, the object moves normally.

checkX = (int) (command->origin.x / 32.0f);
checkY = (int) ((command->origin.y – multiplier * frametime) / 32.0f);

if(mapdata[checkX][checkY] == false)
command->vel.y += –multiplier * frametime;

CalculateHeading Function

This function is usually run after CalculateVelocity, as we need
the velocity values here to calculate the heading for the given
command.

void CArmyWarServer::CalculateHeading(command_t *command)
{

// Right
if((command->vel.x > 0.0f) &&

(command->vel.y == 0.0f))
{

command->heading = EAST;
}

// Left
if((command->vel.x < 0.0f) &&

(command->vel.y == 0.0f))
{

command->heading = WEST;

Tutorial 5 / Creating Your Online Game 469

}

// Down
if((command->vel.y > 0.0f) &&

(command->vel.x == 0.0f))
{

command->heading = SOUTH;
}

// Up
if((command->vel.y < 0.0f) &&

(command->vel.x == 0.0f))
{

command->heading = NORTH;
}

// Down-Right
if((command->vel.x > 0.0f) &&

(command->vel.y > 0.0f))
{

command->heading = SOUTHEAST;
}

// Up-Right
if((command->vel.x > 0.0f) &&

(command->vel.y < 0.0f))
{

command->heading = NORTHEAST;
}

// Down-Left
if((command->vel.x < 0.0f) &&

(command->vel.y > 0.0f))
{

command->heading = SOUTHWEST;
}

// Up-Left
if((command->vel.x < 0.0f) &&

(command->vel.y < 0.0f))
{

command->heading = NORTHWEST;
}

}

The function takes one parameter (command_t *command). It is a
pointer to the command to use. The function simply looks at the veloc-
ity values and determines the heading of the object.

CalculateBulletVelocity Function

This function calculates the velocity for the bullet on a given command.
This function is run only when firing the bullet, so the velocity here

470 Tutorial 5 / Creating Your Online Game

sets the initial heading of the bullet. The velocity is not scaled with
frame time because this function is not called each frame. Frame time
scaling is done when moving the bullet.

void CArmyWarServer::CalculateBulletVelocity(command_t *command)
{

command->bullet.shot = true;

if(command->heading == NORTH)
{

command->bullet.vel.x = 0.0f;
command->bullet.vel.y = –200.0f;

}
if(command->heading == SOUTH)
{

command->bullet.vel.x = 0.0f;
command->bullet.vel.y = 200.0f;

}
if(command->heading == EAST)
{

command->bullet.vel.x = 200.0f;
command->bullet.vel.y = 0.0f;

}
if(command->heading == WEST)
{

command->bullet.vel.x = –200.0f;
command->bullet.vel.y = 0.0f;

}
if(command->heading == NORTHEAST)
{

command->bullet.vel.x = 200.0f;
command->bullet.vel.y = –200.0f;

}
if(command->heading == NORTHWEST)
{

command->bullet.vel.x = –200.0f;
command->bullet.vel.y = –200.0f;

}
if(command->heading == SOUTHEAST)
{

command->bullet.vel.x = 200.0f;
command->bullet.vel.y = 200.0f;

}
if(command->heading == SOUTHWEST)
{

command->bullet.vel.x = –200.0f;
command->bullet.vel.y = 200.0f;

}
}

The function takes one parameter (command_t *command) that is
the pointer to the command to use. This function needs to run after the

Tutorial 5 / Creating Your Online Game 471

player’s heading has been calculated, because the bullet’s heading will
be the same.

MovePlayer Function

This function does the actual moving of the players and bullets. Note
that the formulas we use to calculate the velocities and positions must
match the ones used on the client side. This function is run every time
we receive a “frame” message from a client (a client sends one on
every frame, so we end up running the same amount of frames as the
client).

void CArmyWarServer::MovePlayer(clientData *client)
{

float clientFrametime;

float multiplier = 100.0f;

clientFrametime = client->command.msec / 1000.0f;

CalculateVelocity(&client->command, clientFrametime);
CalculateHeading(&client->command);

// Move the client based on the commands
client->command.origin.x += client->command.vel.x;
client->command.origin.y += client->command.vel.y;

// Bullet
if(client->command.bullet.shot == false)
{

client->command.bullet.origin.x = client->command.origin.x;
client->command.bullet.origin.y = client->command.origin.y;

}
else
{

client->command.bullet.lifetime += (int) (clientFrametime *
1000.0f);

if(client->command.bullet.lifetime > 2000)
{

client->command.bullet.shot = false;
client->command.bullet.lifetime = 0;

client->command.bullet.origin.x = client->command.origin.x;
client->command.bullet.origin.y = client->command.origin.y;

}
}

if(client->command.key & KEY_WEAPON && client->command.bullet.shot ==
false)

{

472 Tutorial 5 / Creating Your Online Game

CalculateBulletVelocity(&client->command);
}

if(client->command.bullet.shot)
{

client->command.bullet.origin.x += client->command.bullet.vel.x
* clientFrametime;

client->command.bullet.origin.y += client->command.bullet.vel.y
* clientFrametime;

}

// Check for bullet hits
if(client->command.bullet.shot)
{

for(clientData *client2 = clientList; client2 != NULL; client2
= client2->next)

{
if(client == client2)

continue;

client2->diedThisFrame = false;

VECTOR2D pos = client2->command.origin;
pos.x += 16.0f;
pos.y += 16.0f;

VECTOR2D vec = VectorSubtract(&client->
command.bullet.origin, &pos);

float distance = VectorLength(&vec);

if(distance < 16.0f)
{

// Player dies
client2->command.origin.x = client2->startPos.x;
client2->command.origin.y = client2->startPos.y;
client2->diedThisFrame = true;

if(client2 == playerWithFlag)
{

playerWithFlag = NULL;
updateFlag = true;

}

updateKill = true;

client->command.bullet.shot = false;

break;
}

}
}

int f = client->netClient->GetIncomingSequence() &
(COMMAND_HISTORY_SIZE–1);

Tutorial 5 / Creating Your Online Game 473

client->processedFrame = f;
}

The function takes one parameter (clientData *client). This is a
pointer to the client to move. We use the client’s own frame time,
because we must run exactly the same frames as the client. The frame
time is given to us in the packet the client sent us.

clientFrametime = client->command.msec / 1000.0f;

The bullet lives for 2 seconds before it is removed. The following piece
of code shows how we calculate the lifetime. We simply add the frame
time to the bullet’s lifetime and then check if 2 seconds have passed.

client->command.bullet.lifetime += (int) (clientFrametime * 1000.0f);

if(client->command.bullet.lifetime > 2000)
{

client->command.bullet.shot = false;
client->command.bullet.lifetime = 0;

client->command.bullet.origin.x = client->command.origin.x;
client->command.bullet.origin.y = client->command.origin.y;

}

The following code shows how to check for bullet hits. First of all, the
bullet must be shot in order to do that. Then we loop through all the
players except the one who owns the bullet and check if the bullet posi-
tion is within 16 pixels of a player’s position. If it is, the bullet hit and
killed that player. If that player was carrying the flag, it is dropped. The
flags are set up to indicate that a player died and we should update the
clients, and more precisely that this player died.

// Check for bullet hits
if(client->command.bullet.shot)
{

for(clientData *client2 = clientList; client2 != NULL; client2 =
client2->next)

{
if(client == client2)

continue;

client2->diedThisFrame = false;

VECTOR2D pos = client2->command.origin;
pos.x += 16.0f;
pos.y += 16.0f;

VECTOR2D vec = VectorSubtract(&client->command.bullet.origin,
&pos);

float distance = VectorLength(&vec);

474 Tutorial 5 / Creating Your Online Game

if(distance < 16.0f)
{

// Player dies
client2->command.origin.x = client2->startPos.x;
client2->command.origin.y = client2->startPos.y;
client2->diedThisFrame = true;

if(client2 == playerWithFlag)
{

playerWithFlag = NULL;
updateFlag = true;

}

updateKill = true;

client->command.bullet.shot = false;

break;
}

}
}

The last thing we do in this function is set the processedFrame
variable for the client. This is a history array indexed value, and it is
sent to the client for comparison reasons. (The client compares this
frame to the one it processed itself, and this number is the index num-
ber that identifies the frame.)

int f = client->netClient->GetIncomingSequence() & (COMMAND_HISTORY_SIZE–1);
client->processedFrame = f;

CheckFlagCollisions Function

This function checks for possible flag collisions, both if a player picked
up the flag and if a player carried the flag to the target area.

void CArmyWarServer::CheckFlagCollisions(void)
{

if(playerWithFlag != NULL)
{

// Move the flag with the player
flagX = playerWithFlag->command.origin.x;
flagY = playerWithFlag->command.origin.y;

// Check if the player is at home base
if((playerWithFlag) && (playerWithFlag->team == BLUE_TEAM))
{

if(playerWithFlag->command.origin.x+16 > (49*32) &&
playerWithFlag->command.origin.x+16 < (50*32) &&
playerWithFlag->command.origin.y+16 > (3*32) &&
playerWithFlag->command.origin.y+16 < (4*32))

{
flagX = 49*32;
flagY = 49*32;

Tutorial 5 / Creating Your Online Game 475

playerWithFlag = NULL;
blueScore++;

updateFlag = true;
}

}
if((playerWithFlag) && (playerWithFlag->team == RED_TEAM))
{

if(playerWithFlag->command.origin.x+16 > (49*32) &&
playerWithFlag->command.origin.x+16 < (50*32) &&
playerWithFlag->command.origin.y+16 > (97*32) &&
playerWithFlag->command.origin.y+16 < (98*32))

{
flagX = 49*32;
flagY = 49*32;
playerWithFlag = NULL;
redScore++;

updateFlag = true;
}

}
}
else
{

// Check if anyone is in contact with the flag
clientData *list = clientList;

for(; list != NULL; list = list->next)
{

if(list->command.origin.x+16 > flagX && list->
command.origin.x+16 < flagX+32 &&
list->command.origin.y+16 > flagY && list->
command.origin.y+16 < flagY+32)

{
char team[10];

if(list->team == RED_TEAM)
strcpy(team, "RED team");

else
strcpy(team, "BLUE team");

LogString("FLAG hit : player %d: %s, %s",
list->netClient->GetIndex(), list->
netClient->GetName(), team);

playerWithFlag = list;

updateFlag = true;
return;

}
}

}
}

476 Tutorial 5 / Creating Your Online Game

Frame Function

This function runs the frame on the server. It reads the packets from
the clients, moves the players if they send us something, and sends the
commands to all the clients. Commands are sent in 100-millisecond
intervals to save required bandwidth. Dead reckoning will take care of
the clients moving even when they do not receive a packet from the
server.

void CArmyWarServer::Frame(int msec)
{

realtime += msec;
frametime = msec / 1000.0f;

// Read packets from clients
ReadPackets();

if(inProgress == false)
return;

// Check if someone hit the flag
CheckFlagCollisions();

// Wait full 100 ms before allowing to send
if(realtime < servertime)
{

// never let the time get too far off
if(servertime – realtime > 100)
{

realtime = servertime – 100;
}

return;
}

// Bump frame number, and calculate new servertime
framenum++;
servertime = framenum * 100;

if(servertime < realtime)
realtime = servertime;

SendCommand();

// Reset update flags
updateFlag = false;
updateKill = false;

}

This function takes one parameter (int msec), the frame time of the
server. Packets are read every frame, but they are not sent every
frame.

Tutorial 5 / Creating Your Online Game 477

Here we check if enough time has passed to send packets. If not, the
function returns and does not reach the sending function.

// Wait full 100 ms before allowing to send
if(realtime < servertime)
{

// Never let the time get too far off
if(servertime – realtime > 100)
{

realtime = servertime – 100;
}

return;
}

A new server time is calculated when the old one is reached:

// Bump frame number, and calculate new servertime
framenum++;
servertime = framenum * 100;

Commands are sent to each client:

SendCommand();

lobby.cpp File

Now that we have the game data structures, we can implement the
functions we introduced in Tutorial 4.

AddGame Function

This function adds a game to the server’s game list. If the list does not
exist yet, it is created. This means that no games exist yet, so the game
we are adding is the first one. Otherwise, we just add a new game to
the list.

The game’s information is filled in (name, index number, etc.). Then
the function tries to open a game server for the new game, using the
InitNetwork function. Each game uses its own port number, which
is based on the game’s index number.

Finally, the game’s counter is increased.

void CLobbyServer::AddGame(char *name)
{

// First get a pointer to the beginning of client list
CArmyWarServer *list = gameList;
CArmyWarServer *prev;

// No clients yet, adding the first one
if(gameList == NULL)
{

478 Tutorial 5 / Creating Your Online Game

gameList = new CArmyWarServer;

gameList->SetName(name);
gameList->next = NULL;
gameList->SetIndex(gameAmount);
gameList->GenerateRandomMap();

if(gameList->InitNetwork(GetGameAmount()) != 0)
{

LogString("Could not create game server");
}

}
else
{

prev = list;
list = gameList->next;

while(list != NULL)
{

prev = list;
list = list->next;

}

list = new CArmyWarServer;

list->SetName(name);
list->next = NULL;
list->SetIndex(gameAmount);
list->GenerateRandomMap();

if(list->InitNetwork(GetGameAmount()) != 0)
{

LogString("Could not create game server");
}

prev->next = list;
}

gameAmount++;
}

RemoveGame Function

This function removes the selected game from the server’s game list.
First, the correct game is looked up by going through the game list and
comparing the names. Once the game is found, the game’s network is
shut down and the game list is updated. If the game is the last in the
list, the list is marked empty by pointing it to NULL (or as you can see
in the code, by pointing it to the next game in the list, which is NULL).

The game counter is then decreased.

Tutorial 5 / Creating Your Online Game 479

void CLobbyServer::RemoveGame(char *name)
{

CArmyWarServer *list = gameList;
CArmyWarServer *prev = NULL;
CArmyWarServer *next = NULL;

for(; list != NULL; list = list->next)
{

if(strcmp(name, list->GetName()) == 0)
{

if(prev != NULL)
{

prev->next = list->next;
}

break;
}

prev = list;
}

if(list == gameList)
{

if(list)
{

list->ShutdownNetwork();

next = list->next;
delete list;

}

list = NULL;
gameList = next;

}
else
{

if(list)
{

list->ShutdownNetwork();

next = list->next;
delete list;

}

list = next;
}

gameAmount--;
}

480 Tutorial 5 / Creating Your Online Game

RemoveGames Function

This function simply removes all the games in the game list.

void CLobbyServer::RemoveGames(void)
{

CArmyWarServer *list = gameList;
CArmyWarServer *next;

while(list != NULL)
{

if(list)
{

list->ShutdownNetwork();

next = list->next;
delete list;

}

list = next;
}

gameList = NULL;
gameAmount = 0;

}

Summary of Server Code

That is it for the server-side code. We now have a working server for
our game that receives data and moves the players, and sends only in
100-millisecond intervals to save bandwidth. Now all we need is a client
connecting to the server.

Game Client Code

Now to the final part of this tutorial, the client-side code. We have some
new source code files: client.cpp, network.cpp, and client.h. Also some
of the old client-side files have changed a little bit.

Tutorial 5 / Creating Your Online Game 481

client.h File

Like on the server side (server.h), this header file contains the applica-
tion-specific data structures. This is where the player data structures
are, along with the game’s main class and some definitions. The main
class has the network interface methods that we learned to create in
the previous tutorials (like ReadPackets() and so on).

#ifndef CLIENT_H
#define CLIENT_H

#include <gl/gl.h>
#include <gl/glu.h>
#include <gl/glaux.h>
#include <2dlib.h>

#include "network.h"

#define NORTH 0
#define NORTHEAST 45
#define EAST 90
#define SOUTHEAST 135
#define SOUTH 180
#define SOUTHWEST 225
#define WEST 270
#define NORTHWEST 315

#define BLUE_TEAM 0
#define RED_TEAM 1

typedef struct
{

482 Tutorial 5 / Creating Your Online Game

Figure 2

float x;
float y;

} VECTOR2D;

typedef struct bullet_t
{

VECTOR2D vel;
VECTOR2D origin;
VECTOR2D predictedOrigin;

bool shot;
int lifetime;

} bullet_t;

typedef struct
{

int key;
int heading;

VECTOR2D vel;
VECTOR2D origin;
VECTOR2D predictedOrigin;

bullet_t bullet;

int msec;
} command_t;

typedef struct clientData
{

command_t frame[COMMAND_HISTORY_SIZE]; // frame history
command_t serverFrame; // the latest frame from

// server
command_t command; // current frame's commands

int index;

int processedFrame;

VECTOR2D startPos;
bool team;
char nickname[30];
char password[30];

clientData *next;
} clientData;

// The main application class interface
class CArmyWar
{
private:

// Methods

// Client.cpp

Tutorial 5 / Creating Your Online Game 483

void InitializeEngine(void);
void DrawMap(void);
void CheckVictory(void);
void KillPlayer(int index);
clientData *GetClientPointer(int index);

void CheckPredictionError(int a);
void CheckBulletPredictionError(int a);
void CalculateVelocity(command_t *command, float frametime);
void CalculateHeading(command_t *command);
void CalculateBulletVelocity(command_t *command);
void PredictMovement(int prevFrame, int curFrame);
void MoveObjects(void);

void AddClient(int local, int index, char *name);
void RemoveClient(int index);
void RemoveClients(void);

// Network.cpp
void ReadPackets(void);
void SendCommand(void);
void SendRequestNonDeltaFrame(void);
void ReadMoveCommand(dreamMessage *mes, clientData *client);
void ReadDeltaMoveCommand(dreamMessage *mes, clientData *client);
void BuildDeltaMoveCommand(dreamMessage *mes, clientData *theClient);

// Variables

// Network variables
dreamClient *networkClient;

clientData *clientList; // Client list
clientData *localClient; // Pointer to the local client in the

// client list
int clients;

clientData inputClient; // Handles all keyboard input

// Graphic declarations
GFX_IMAGE2D grass; // variable to hold graphic
GFX_IMAGE2D redman; // variable to hold graphic
GFX_IMAGE2D blueman; // variable to hold graphic
GFX_IMAGE2D tree; // variable to hold graphic
GFX_IMAGE2D redtarget; // variable to hold graphic
GFX_IMAGE2D bluetarget; // variable to hold graphic
GFX_IMAGE2D flag; // variable to hold graphic
GFX_IMAGE2D rednumbers[10]; // variable to hold graphic
GFX_IMAGE2D bluenumbers[10]; // variable to hold graphic

float frametime;

char gamename[32];
bool inProgress;

484 Tutorial 5 / Creating Your Online Game

bool init;

// Tile scroll positions
int scrollX;
int scrollY;
int tileScrollX;
int tileScrollY;

bool mapdata[100][100];
int gameIndex;

float targetRotation; // variable to rotate the target images

int redScore;
int blueScore;

float flagX;
float flagY;
clientData *playerWithFlag;

public:
CArmyWar();
~CArmyWar();

// Client.cpp
void Shutdown(void);
void CheckKeys(void);
void Frame(void);
void RunNetwork(int msec);

// Network.cpp
void StartConnection(int ind);
void Connect(void);
void Disconnect(void);
void SendStartGame(void);

void SetName(char *n) {strcpy(gamename, n);}
char *GetName(void) {return gamename;}

void SetGameIndex(int index) {gameIndex = index;}
int GetGameIndex(void) {return gameIndex;}

clientData *GetClientList(void) {return clientList;}

void SetInProgress(bool p) {inProgress = p;}
bool GetInProgress(void) {return inProgress;}

CArmyWar *next;
};

#endif

Tutorial 5 / Creating Your Online Game 485

The command data structures are the same as on the server side, so
we will skip that part now. The client data structure is slightly different,
but is very easy to understand.

The directions in which a player can move are given in the following
definitions:

#define NORTH 0
#define NORTHEAST 45
#define EAST 90
#define SOUTHEAST 135
#define SOUTH 180
#define SOUTHWEST 225
#define WEST 270
#define NORTHWEST 315

The CArmyWar class has some variables that need explaining, so here
goes.

// Network variables
dreamClient *networkClient;

clientData *clientList; // Client list
clientData *localClient; // Pointer to the local client in the

// client list
int clients;

clientData inputClient; // Handles all keyboard input

// Graphic declarations
GFX_IMAGE2D grass; // variable to hold graphic
GFX_IMAGE2D redman; // variable to hold graphic
GFX_IMAGE2D blueman; // variable to hold graphic
GFX_IMAGE2D tree; // variable to hold graphic
GFX_IMAGE2D redtarget; // variable to hold graphic
GFX_IMAGE2D bluetarget; // variable to hold graphic
GFX_IMAGE2D flag; // variable to hold graphic
GFX_IMAGE2D rednumbers[10]; // variable to hold graphic
GFX_IMAGE2D bluenumbers[10]; // variable to hold graphic

float frametime;

char gamename[32];
bool inProgress;
bool init;

// Tile scroll positions
int scrollX;
int scrollY;
int tileScrollX;
int tileScrollY;

bool mapdata[100][100];
int gameIndex;

486 Tutorial 5 / Creating Your Online Game

float targetRotation; // variable to rotate the target images

int redScore;
int blueScore;

float flagX;
float flagY;
clientData *playerWithFlag;

The dreamClient networkClient is the dreamClient network client
object. The clientData *clientList is the list of all the clients con-
nected on the same server as we are. The clientData *localClient
is the local client on that list. The clientData inputClient is used to
handle the keyboard input.

The ints scrollX and scrollY are used to store the amount the
screen has scrolled (in pixels). The ints tileScrollX and
tileScrollY are used to store the amount the screen has scrolled
(in tiles). A tile is 32 pixels in height and width.

The bool mapdata[100][100] stores the map data. A 0 means
plain grass and a 1 means a tree. The floats flagX and flagY store
the flags’ coordinates.

The clientData *playerWithFlag is a pointer to the player who
is carrying the flag. If no one is carrying the flag, this pointer is NULL.

network.h File

The network.h file on the client side now looks like this:

#ifndef NETWORK_H
#define NETWORK_H

#define COMMAND_HISTORY_SIZE 64

#define KEY_UP 1
#define KEY_DOWN 2
#define KEY_LEFT 4
#define KEY_RIGHT 8
#define KEY_WEAPON 16

#define CMD_KEY 1
#define CMD_HEADING 2
#define CMD_ORIGIN 4
#define CMD_BULLET 8
#define CMD_FLAG 16
#define CMD_KILL 32

#define USER_MES_FRAME 1
#define USER_MES_NONDELTAFRAME 2
#define USER_MES_SERVEREXIT 3
#define USER_MES_LOGIN 4
#define USER_MES_SIGNIN 5

Tutorial 5 / Creating Your Online Game 487

#define USER_MES_CHAT 6
#define USER_MES_CREATEGAME 7
#define USER_MES_REMOVEGAME 8
#define USER_MES_GAMEDATA 9
#define USER_MES_STARTGAME 10
#define USER_MES_MAPDATA 11
#define USER_MES_KEEPALIVE 12

typedef struct clientLoginData
{

int index;
char nickname[30];
clientLoginData *next;

} clientLoginData;

#endif

common.h File

This header file is just a header file wrapper. So you only need to
include this header, and all the required header files are provided for
you in the correct order.

#ifndef __COMMON_H__
#define __COMMON_H__

#include "dreamSock.h"

#include "client.h"
#include "network.h"
#include "lobby.h"
#include "signin.h"
#include "main.h"

#endif

main.cpp File

Our game’s base initialization happens in this file, which includes some
new functions. All the windows are created and handled here. This file
does not include game logic.

VectorLength and VectorSubtract Functions

These functions are helper functions to do some vector calculations.
The first one returns the length of a vector, and the second one sub-
tracts one vector from another.

float VectorLength(VECTOR2D *vec)
{

return (float) sqrt(vec->x*vec->x + vec->y*vec->y);

488 Tutorial 5 / Creating Your Online Game

}

VECTOR2D VectorSubtract(VECTOR2D *vec1, VECTOR2D *vec2)
{

VECTOR2D vec;

vec.x = vec1->x – vec2->x;
vec.y = vec1->y – vec2->y;

return vec;
}

ApplicationProc Function

This function now handles keyboard input and maintains the Join Game
button’s state.

case WM_KEYDOWN:
{

keys[wParam] = TRUE;
break;

}

case WM_KEYUP:
{

keys[wParam] = FALSE;
break;

}

default:
if(!Lobby.GetGameAmount())
{

EnableWindow(GetDlgItem(hWnd_LobbyDialog, IDC_JOINGAME), FALSE);
}
break;

Dialog Procedures

The dialog procedure functions have also changed, as we now actually
send the data that goes with the dialogs. They are very simple addi-
tions, so they are not listed here.

Main Loop

The game’s main loop is almost the same as in the earlier tutorials, but
this time it also handles network and keyboard input/output for the
game itself. The new part can be seen here:

// If we have a local game, run the frames for it
if(Lobby.GetLocalGame() != NULL)
{

Lobby.GetLocalGame()->RunNetwork(time);
Lobby.GetLocalGame()->CheckKeys();

Tutorial 5 / Creating Your Online Game 489

Lobby.GetLocalGame()->Frame();
}

network.cpp File

This file contains the network-only code for the client. The connection
can be started with these methods and data can be sent and received.
Also, the client list is updated with these functions. There are many
functions that are similar to the ones on the server side, so those func-
tions will not be explained here.

#include "common.h"

//---
// Name: empty()
// Desc:
//---
void CArmyWar::StartConnection(int ind)
{

LogString("StartConnection %d", ind);

gameIndex = ind;

int ret = networkClient->Initialize("", serverIP, 30004 + gameIndex);

if(ret == DREAMSOCK_CLIENT_ERROR)
{

char text[64];
sprintf(text, "Could not open client socket");

MessageBox(NULL, text, "Error", MB_OK);
}

Connect();
}

//---
// Name: empty()
// Desc:
//---
void CArmyWar::ReadPackets(void)
{

char data[1400];
struct sockaddr address;

clientData *clList;

int type;
int ind;
int local;
int ret;

490 Tutorial 5 / Creating Your Online Game

char name[50];

dreamMessage mes;
mes.Init(data, sizeof(data));

while(ret = networkClient->GetPacket(mes.data, &address))
{

mes.SetSize(ret);
mes.BeginReading();

type = mes.ReadByte();

switch(type)
{
case DREAMSOCK_MES_ADDCLIENT:

local = mes.ReadByte();
ind = mes.ReadByte();
strcpy(name, mes.ReadString());

AddClient(local, ind, name);
break;

case DREAMSOCK_MES_REMOVECLIENT:
ind = mes.ReadByte();

LogString("Got removeclient %d message", ind);

RemoveClient(ind);

if(clientList == NULL)
{

LogString("clientList == NULL, sending remove game
%s", gamename);

Lobby.SendRemoveGame(gamename);
}
break;

case USER_MES_FRAME:
// Skip sequences
mes.ReadShort();
mes.ReadShort();

for(clList = clientList; clList != NULL; clList =
clList->next)

{
LogString("Reading DELTAFRAME for client %d",

clList->index);
ReadDeltaMoveCommand(&mes, clList);

}

break;

case USER_MES_NONDELTAFRAME:
// Skip sequences

Tutorial 5 / Creating Your Online Game 491

mes.ReadShort();
mes.ReadShort();

clList = clientList;

for(clList = clientList; clList != NULL; clList =
clList->next)

{
LogString("Reading NONDELTAFRAME for client %d",

clList->index);
ReadMoveCommand(&mes, clList);

}

break;

case USER_MES_SERVEREXIT:
MessageBox(NULL, "Server disconnected", "Info", MB_OK);
Disconnect();
break;

case USER_MES_STARTGAME:
// Skip sequences
mes.ReadShort();
mes.ReadShort();

DestroyWindow(hWnd_JoinGameDialog);

InitializeEngine();

break;

case USER_MES_MAPDATA:
// Skip sequences
mes.ReadShort();
mes.ReadShort();

for(int m = 0; m < 300; m++)
{

int i = mes.ReadByte();
int j = mes.ReadByte();

mapdata[i][j] = true;
}

break;

}
}

}

//---
// Name: empty()
// Desc:
//---

492 Tutorial 5 / Creating Your Online Game

void CArmyWar::AddClient(int local, int ind, char *name)
{

// First get a pointer to the beginning of the client list
clientData *list = clientList;
clientData *prev;

LogString("App: Client: Adding client with index %d", ind);

// No clients yet, adding the first one
if(clientList == NULL)
{

LogString("App: Client: Adding first client");

clientList = (clientData *) calloc(1, sizeof(clientData));

if(local)
{

LogString("App: Client: This one is local");
localClient = clientList;

}

clientList->index = ind;
strcpy(clientList->nickname, name);

if(clients % 2 == 0)
clientList->team = RED_TEAM;

else
clientList->team = BLUE_TEAM;

clientList->next = NULL;
}
else
{

LogString("App: Client: Adding another client");

prev = list;
list = clientList->next;

while(list != NULL)
{

prev = list;
list = list->next;

}

list = (clientData *) calloc(1, sizeof(clientData));

if(local)
{

LogString("App: Client: This one is local");
localClient = list;

}

list->index = ind;

Tutorial 5 / Creating Your Online Game 493

strcpy(list->nickname, name);

if(clients % 2 == 0)
list->team = RED_TEAM;

else
list->team = BLUE_TEAM;

list->next = NULL;
prev->next = list;

}

clients++;

// If we just joined the game, request a non-delta compressed frame
if(local)

SendRequestNonDeltaFrame();

Lobby.RefreshJoinedPlayersList();
}

//---
// Name: empty()
// Desc:
//---
void CArmyWar::RemoveClient(int ind)
{

clientData *list = clientList;
clientData *prev = NULL;
clientData *next = NULL;

// Look for correct client and update list
for(; list != NULL; list = list->next)
{

if(list->index == ind)
{

if(prev != NULL)
{

prev->next = list->next;
}

break;
}

prev = list;
}

// First entry
if(list == clientList)
{

if(list)
{

next = list->next;
free(list);

494 Tutorial 5 / Creating Your Online Game

}

list = NULL;
clientList = next;

}

// Other
else
{

if(list)
{

next = list->next;
free(list);

}

list = next;
}

clients--;

Lobby.RefreshJoinedPlayersList();
}

//---
// Name: empty()
// Desc:
//---
void CArmyWar::RemoveClients(void)
{

clientData *list = clientList;
clientData *next;

while(list != NULL)
{

if(list)
{

next = list->next;
free(list);

}

list = next;
}

clientList = NULL;
clients = 0;

}

//---
// Name: empty()
// Desc:
//---
void CArmyWar::SendCommand(void)
{

if(networkClient->GetConnectionState() != DREAMSOCK_CONNECTED)

Tutorial 5 / Creating Your Online Game 495

return;

dreamMessage message;
char data[1400];

int i = networkClient->GetOutgoingSequence() & (COMMAND_HISTORY_SIZE–1);

message.Init(data, sizeof(data));
message.WriteByte(USER_MES_FRAME); // type
message.AddSequences(networkClient); // sequences

// Build delta-compressed move command
BuildDeltaMoveCommand(&message, &inputClient);

// Send the packet
networkClient->SendPacket(&message);

// Store the command to the input client's history
memcpy(&inputClient.frame[i], &inputClient.command, sizeof(command_t));

clientData *clList = clientList;

// Store the commands to the clients' history
for(; clList != NULL; clList = clList->next)
{

memcpy(&clList->frame[i], &clList->command, sizeof(command_t));
}

}

//---
// Name: empty()
// Desc:
//---
void CArmyWar::SendStartGame(void)
{

char data[1400];
dreamMessage message;
message.Init(data, sizeof(data));

message.WriteByte(USER_MES_STARTGAME);
message.AddSequences(networkClient);

networkClient->SendPacket(&message);
}

//---
// Name: empty()
// Desc:
//---
void CArmyWar::SendRequestNonDeltaFrame(void)
{

char data[1400];
dreamMessage message;

496 Tutorial 5 / Creating Your Online Game

message.Init(data, sizeof(data));

message.WriteByte(USER_MES_NONDELTAFRAME);
message.AddSequences(networkClient);

networkClient->SendPacket(&message);
}

//---
// Name: empty()
// Desc:
//---
void CArmyWar::Connect(void)
{

if(init)
{

LogString("ArmyWar already initialized");
return;

}

LogString("CArmyWar::Connect");

init = true;

networkClient->SendConnect(Lobby.GetLocalClient()->nickname);
}

//---
// Name: empty()
// Desc:
//---
void CArmyWar::Disconnect(void)
{

if(!init)
return;

LogString("CArmyWar::Disconnect");

init = false;
localClient = NULL;
memset(&inputClient, 0, sizeof(clientData));

networkClient->SendDisconnect();
}

//---
// Name: empty()
// Desc:
//---
void CArmyWar::ReadMoveCommand(dreamMessage *mes, clientData *client)
{

// Key
client->serverFrame.key = mes->ReadByte();

Tutorial 5 / Creating Your Online Game 497

// Heading
client->serverFrame.heading = mes->ReadShort();

// Origin
client->serverFrame.origin.x = mes->ReadFloat();
client->serverFrame.origin.y = mes->ReadFloat();
client->serverFrame.vel.x = mes->ReadFloat();
client->serverFrame.vel.y = mes->ReadFloat();

client->serverFrame.bullet.origin.x = mes->ReadFloat();
client->serverFrame.bullet.origin.y = mes->ReadFloat();
client->serverFrame.bullet.vel.x = mes->ReadFloat();
client->serverFrame.bullet.vel.y = mes->ReadFloat();
client->serverFrame.bullet.lifetime = mes->ReadShort();
client->serverFrame.bullet.shot = mes->ReadByte();

int playerWithFlagIndex = mes->ReadShort();

if(playerWithFlagIndex != –1)
{

playerWithFlag = GetClientPointer(playerWithFlagIndex);
}

flagX = mes->ReadFloat();
flagY = mes->ReadFloat();

redScore = mes->ReadByte();
blueScore = mes->ReadByte();

// Read time to run command
client->serverFrame.msec = mes->ReadByte();

memcpy(&client->command, &client->serverFrame, sizeof(command_t));

// Fill the history array with the position we got
for(int f = 0; f < COMMAND_HISTORY_SIZE; f++)
{

client->frame[f].predictedOrigin.x = client->command.origin.x;
client->frame[f].predictedOrigin.y = client->command.origin.y;
client->frame[f].bullet.predictedOrigin.x = client->

command.bullet.origin.x;
client->frame[f].bullet.predictedOrigin.y = client->

command.bullet.origin.y;
}

}

//---
// Name: empty()
// Desc:
//---
void CArmyWar::ReadDeltaMoveCommand(dreamMessage *mes, clientData *client)
{

int processedFrame;

498 Tutorial 5 / Creating Your Online Game

int flags = 0;

// Flags
flags = mes->ReadByte();

// Key
if(flags & CMD_KEY)
{

client->serverFrame.key = mes->ReadByte();

client->command.key = client->serverFrame.key;
LogString("Client %d: Read key %d", client->index, client->

command.key);
}

if(flags & CMD_ORIGIN || flags & CMD_BULLET)
{

processedFrame = mes->ReadByte();
client->processedFrame = processedFrame;

}

// Origin
if(flags & CMD_ORIGIN)
{

client->serverFrame.origin.x = mes->ReadFloat();
client->serverFrame.origin.y = mes->ReadFloat();

client->serverFrame.vel.x = mes->ReadFloat();
client->serverFrame.vel.y = mes->ReadFloat();

if(client == localClient)
{

CheckPredictionError(processedFrame);
}
else
{

client->command.origin.x = client->serverFrame.origin.x;
client->command.origin.y = client->serverFrame.origin.y;

}
}

if(flags & CMD_BULLET)
{

client->serverFrame.bullet.origin.x = mes->ReadFloat();
client->serverFrame.bullet.origin.y = mes->ReadFloat();
client->serverFrame.bullet.vel.x = mes->ReadFloat();
client->serverFrame.bullet.vel.y = mes->ReadFloat();
client->serverFrame.bullet.shot = mes->ReadByte();

client->command.bullet.shot = client->serverFrame.bullet.shot;

if(client == localClient)
{

CheckBulletPredictionError(processedFrame);

Tutorial 5 / Creating Your Online Game 499

}
else
{

client->command.bullet.origin.x = client->
serverFrame.bullet.origin.x;

client->command.bullet.origin.y = client->
serverFrame.bullet.origin.y;

}
}

// Flag & points
if(flags & CMD_FLAG)
{

int playerWithFlagIndex = mes->ReadShort();

if(playerWithFlagIndex != 0)
{

LogString("FLAG playerWithFlagIndex %d",
playerWithFlagIndex);

playerWithFlag = GetClientPointer(playerWithFlagIndex);
}
else
{

playerWithFlag = NULL;
}

flagX = mes->ReadFloat();
flagY = mes->ReadFloat();

redScore = mes->ReadByte();
blueScore = mes->ReadByte();

CheckVictory();
}

// Someone died
if(flags & CMD_KILL)
{

int died = mes->ReadByte();

if(died)
KillPlayer(client->index);

}

// Read time to run command
client->command.msec = mes->ReadByte();

}

//---
// Name: empty()
// Desc:
//---
void CArmyWar::BuildDeltaMoveCommand(dreamMessage *mes, clientData *theClient)
{

500 Tutorial 5 / Creating Your Online Game

int flags = 0;
int last = (networkClient->GetOutgoingSequence() – 1) &

(COMMAND_HISTORY_SIZE–1);

// Check what needs to be updated
if(theClient->frame[last].key != theClient->command.key)

flags |= CMD_KEY;

// Add to the message
// Flags
mes->WriteByte(flags);

// Key
if(flags & CMD_KEY)
{

mes->WriteByte(theClient->command.key);
}

mes->WriteByte(theClient->command.msec);
}

//---
// Name: empty()
// Desc:
//---
void CArmyWar::RunNetwork(int msec)
{

static int time = 0;
time += msec;

// Framerate is too high
if(time < (1000 / 60))

return;

frametime = time / 1000.0f;
time = 0;

// Read packets from server, and send new commands
ReadPackets();
SendCommand();

int ack = networkClient->GetIncomingAcknowledged();
int current = networkClient->GetOutgoingSequence();

// Check that we haven't gone too far
if(current – ack > COMMAND_HISTORY_SIZE)

return;

// Predict the frames that we are waiting on from the server
for(int a = ack + 1; a < current; a++)
{

int prevframe = (a–1) & (COMMAND_HISTORY_SIZE–1);
int frame = a & (COMMAND_HISTORY_SIZE–1);

Tutorial 5 / Creating Your Online Game 501

PredictMovement(prevframe, frame);
}

MoveObjects();
}

StartConnection Function

This function starts a specified connection. The parameter ind is used
to specify the index number of the game to which we want to connect.
Each game uses its own port, which is 30004 plus the game’s index
number. So the first game is run on port 30004, the second one on port
30005, and so on.

void CArmyWar::StartConnection(int ind)
{

LogString("StartConnection %d", ind);

gameIndex = ind;

int ret = networkClient->Initialize("", serverIP, 30004 + gameIndex);

if(ret == DREAMSOCK_CLIENT_ERROR)
{

char text[64];
sprintf(text, "Could not open client socket");

MessageBox(NULL, text, "Error", MB_OK);
}

Connect();
}

SendCommand Function

The SendCommand function is used to send the commands to the
server. This function is run every frame, so every frame’s commands
are sent to the server.

void CArmyWar::SendCommand(void)
{

if(networkClient->GetConnectionState() != DREAMSOCK_CONNECTED)
return;

dreamMessage message;
char data[1400];

int i = networkClient->GetOutgoingSequence() & (COMMAND_HISTORY_SIZE–1);

message.Init(data, sizeof(data));
message.WriteByte(USER_MES_FRAME); // type
message.AddSequences(networkClient); // sequences

502 Tutorial 5 / Creating Your Online Game

// Build delta-compressed move command
BuildDeltaMoveCommand(&message, &inputClient);

// Send the packet
networkClient->SendPacket(&message);

// Store the command to the input client's history
memcpy(&inputClient.frame[i], &inputClient.command, sizeof(command_t));

clientData *clList = clientList;

// Store the commands to the clients' history
for(; clList != NULL; clList = clList->next)
{

memcpy(&clList->frame[i], &clList->command, sizeof(command_t));
}

}

A message is always filled on every frame and contains that frame’s
commands. The message is built using the BuildDeltaMove-
Command() function. That function will be explained later in this
tutorial. When the message is built, it is ready to be sent to the server.
Remember that this happens on every frame, even if nothing has
changed from the previous frame. The BuildDeltaMove-
Command() function takes care of keeping track of any changes.

message.Init(data, sizeof(data));
message.WriteByte(USER_MES_FRAME); // type
message.AddSequences(networkClient); // sequences

// Build delta-compressed move command
BuildDeltaMoveCommand(&message, &inputClient);

// Send the packet
networkClient->SendPacket(&message);

Every frame, the message is stored into message history as seen
below. An index number for the history table is calculated by looking at
the outgoing sequence number of the client. Every frame, this number
is one bigger than the last time. Remember that the index number
starts at 0 and ends at COMMAND_HISTORY_SIZE – 1 (COMMAND_
HISTORY_SIZE is defined as 64 in network.h). After 64 frames, the
history starts to get overwritten as that data is too old anyway.

int i = networkClient->GetOutgoingSequence() & (COMMAND_HISTORY_SIZE–1);

...

// Store the command to the input client's history
memcpy(&inputClient.frame[i], &inputClient.command, sizeof(command_t));

clientData *clList = clientList;

Tutorial 5 / Creating Your Online Game 503

// Store the commands to the clients' history
for(; clList != NULL; clList = clList->next)
{

memcpy(&clList->frame[i], &clList->command, sizeof(command_t));
}

SendStartGame Function

This function builds a “start game” message and sends it to the server.

void CArmyWar::SendStartGame(void)
{

char data[1400];
dreamMessage message;
message.Init(data, sizeof(data));

message.WriteByte(USER_MES_STARTGAME);
message.AddSequences(networkClient);

networkClient->SendPacket(&message);
}

SendRequestNonDeltaFrame Function

This function builds a “request non-delta frame” message and sends it
to the server.

void CArmyWar::SendRequestNonDeltaFrame(void)
{

char data[1400];
dreamMessage message;
message.Init(data, sizeof(data));

message.WriteByte(USER_MES_NONDELTAFRAME);
message.AddSequences(networkClient);

networkClient->SendPacket(&message);
}

Connect Function

This function sends a “connect” message to the server, telling the
server we want start a connection with it. UDP protocol does not really
connect to a server, so we sort of fake it this way.

void CArmyWar::Connect(void)
{

if(init)
{

LogString("ArmyWar already initialized");
return;

}

504 Tutorial 5 / Creating Your Online Game

LogString("CArmyWar::Connect");

init = true;

networkClient->SendConnect(Lobby.GetLocalClient()->nickname);
}

Disconnect Function

This function disconnects from the server by sending a “disconnect”
message. Some local variables are reset so they can be reused.

void CArmyWar::Disconnect(void)
{

if(!init)
return;

LogString("CArmyWar::Disconnect");

init = false;
localClient = NULL;
memset(&inputClient, 0, sizeof(clientData));

networkClient->SendDisconnect();
}

ReadMoveCommand Function

This function reads the non-delta (absolute values) commands of a mes-
sage. The parameters define the message to read and the client that
owns the commands.

void CArmyWar::ReadMoveCommand(dreamMessage *mes, clientData *client)
{

// Key
client->serverFrame.key = mes->ReadByte();

// Heading
client->serverFrame.heading = mes->ReadShort();

// Origin
client->serverFrame.origin.x = mes->ReadFloat();
client->serverFrame.origin.y = mes->ReadFloat();
client->serverFrame.vel.x = mes->ReadFloat();
client->serverFrame.vel.y = mes->ReadFloat();

client->serverFrame.bullet.origin.x = mes->ReadFloat();
client->serverFrame.bullet.origin.y = mes->ReadFloat();
client->serverFrame.bullet.vel.x = mes->ReadFloat();
client->serverFrame.bullet.vel.y = mes->ReadFloat();
client->serverFrame.bullet.lifetime = mes->ReadShort();
client->serverFrame.bullet.shot = mes->ReadByte();

Tutorial 5 / Creating Your Online Game 505

int playerWithFlagIndex = mes->ReadShort();

if(playerWithFlagIndex != –1)
{

playerWithFlag = GetClientPointer(playerWithFlagIndex);
}

flagX = mes->ReadFloat();
flagY = mes->ReadFloat();

redScore = mes->ReadByte();
blueScore = mes->ReadByte();

// Read time to run command
client->serverFrame.msec = mes->ReadByte();

memcpy(&client->command, &client->serverFrame, sizeof(command_t));

// Fill the history array with the position we got
for(int f = 0; f < COMMAND_HISTORY_SIZE; f++)
{

client->frame[f].predictedOrigin.x = client->command.origin.x;
client->frame[f].predictedOrigin.y = client->command.origin.y;
client->frame[f].bullet.predictedOrigin.x = client->

command.bullet.origin.x;
client->frame[f].bullet.predictedOrigin.y = client->

command.bullet.origin.y;
}

}

ReadDeltaMoveCommand Function

This function reads the delta (change from last known value) com-
mands. First the flags are read to see which commands are included in
this message. Then each included command is read and stored to the
serverFrame structure.

void CArmyWar::ReadDeltaMoveCommand(dreamMessage *mes, clientData *client)
{

int processedFrame;
int flags = 0;

// Flags
flags = mes->ReadByte();

// Key
if(flags & CMD_KEY)
{

client->serverFrame.key = mes->ReadByte();

client->command.key = client->serverFrame.key;

506 Tutorial 5 / Creating Your Online Game

LogString("Client %d: Read key %d", client->index, client->
command.key);

}

if(flags & CMD_ORIGIN || flags & CMD_BULLET)
{

processedFrame = mes->ReadByte();
client->processedFrame = processedFrame;

}

// Origin
if(flags & CMD_ORIGIN)
{

client->serverFrame.origin.x = mes->ReadFloat();
client->serverFrame.origin.y = mes->ReadFloat();

client->serverFrame.vel.x = mes->ReadFloat();
client->serverFrame.vel.y = mes->ReadFloat();

if(client == localClient)
{

CheckPredictionError(processedFrame);
}
else
{

client->command.origin.x = client->serverFrame.origin.x;
client->command.origin.y = client->serverFrame.origin.y;

}
}

if(flags & CMD_BULLET)
{

client->serverFrame.bullet.origin.x = mes->ReadFloat();
client->serverFrame.bullet.origin.y = mes->ReadFloat();
client->serverFrame.bullet.vel.x = mes->ReadFloat();
client->serverFrame.bullet.vel.y = mes->ReadFloat();
client->serverFrame.bullet.shot = mes->ReadByte();

client->command.bullet.shot = client->serverFrame.bullet.shot;

if(client == localClient)
{

CheckBulletPredictionError(processedFrame);
}
else
{

client->command.bullet.origin.x = client->
serverFrame.bullet.origin.x;

client->command.bullet.origin.y = client->
serverFrame.bullet.origin.y;

}
}

// Flag & points

Tutorial 5 / Creating Your Online Game 507

if(flags & CMD_FLAG)
{

int playerWithFlagIndex = mes->ReadShort();

if(playerWithFlagIndex != 0)
{

LogString("FLAG playerWithFlagIndex %d",
playerWithFlagIndex);

playerWithFlag = GetClientPointer(playerWithFlagIndex);
}
else
{

playerWithFlag = NULL;
}

flagX = mes->ReadFloat();
flagY = mes->ReadFloat();

redScore = mes->ReadByte();
blueScore = mes->ReadByte();

CheckVictory();
}

// Someone died
if(flags & CMD_KILL)
{

int died = mes->ReadByte();

if(died)
KillPlayer(client->index);

}

// Read time to run command
client->command.msec = mes->ReadByte();

}

BuildDeltaMoveCommand Function

This function is used to build the command message based on local
inputs. It is pretty simple; if a key has been pressed this frame, that key
command is written into the message. Then the frame time is written.
The parameters define the message to write to and the input data to
use (normally inputClient).

void CArmyWar::BuildDeltaMoveCommand(dreamMessage *mes, clientData *theClient)
{

int flags = 0;
int last = (networkClient->GetOutgoingSequence() – 1) &

(COMMAND_HISTORY_SIZE–1);

// Check what needs to be updated

508 Tutorial 5 / Creating Your Online Game

if(theClient->frame[last].key != theClient->command.key)
flags |= CMD_KEY;

// Add to the message
// Flags
mes->WriteByte(flags);

// Key
if(flags & CMD_KEY)
{

mes->WriteByte(theClient->command.key);
}

mes->WriteByte(theClient->command.msec);
}

RunNetwork Function

This function runs the network so the data will flow. Because this is cli-
ent-side code, we can and should keep the frame rate under control or
we might end up with clients that are too fast. The function reads and
sends packets, and then finally moves the local objects so the player
sees what is happening in the game.

void CArmyWar::RunNetwork(int msec)
{

static int time = 0;
time += msec;

// Framerate is too high
if(time < (1000 / 60))

return;

frametime = time / 1000.0f;
time = 0;

// Read packets from server and send new commands
ReadPackets();
SendCommand();

int ack = networkClient->GetIncomingAcknowledged();
int current = networkClient->GetOutgoingSequence();

// Check that we haven't gone too far
if(current – ack > COMMAND_HISTORY_SIZE)

return;

// Predict the frames that we are waiting on from the server
for(int a = ack + 1; a < current; a++)
{

int prevframe = (a–1) & (COMMAND_HISTORY_SIZE–1);
int frame = a & (COMMAND_HISTORY_SIZE–1);

Tutorial 5 / Creating Your Online Game 509

PredictMovement(prevframe, frame);
}

MoveObjects();
}

You can see how the network is run below. First we read packets from
the server, then we send new commands back to the server. After that,
the interesting part begins: client prediction or dead reckoning. The
local client will produce its own versions of the frames that it is waiting
on from the server. The client first produces the frame that we last got
from the server, so the client and the server agree on all the player
positions and so on. Now that we are sending packets to the server
each frame, but the server only sends packets to us in 100 ms intervals,
we must guess what the frames in between look like. So the client pro-
duces these frames by using the known player velocities and so on.
Once we get a new frame from the server, it all starts from the
beginning.

// Read packets from server and send new commands
ReadPackets();
SendCommand();

int ack = networkClient->GetIncomingAcknowledged();
int current = networkClient->GetOutgoingSequence();

// Check that we haven't gone too far
if(current – ack > COMMAND_HISTORY_SIZE)

return;

The current frame is produced with the following code. We must pro-
duce some past frames first, because we do not know if there was a
prediction error (a difference between the server’s frame and ours). If
there was an error in one of the past frames, it becomes fixed once the
server tells us the real frame data. It might take some time for the
server to do that though, so we must keep producing the old frames
until we know the real values of the frame data (player positions and
movement).

// Predict the frames that we are waiting on from the server
for(int a = ack + 1; a < current; a++)
{

int prevframe = (a–1) & (COMMAND_HISTORY_SIZE–1);
int frame = a & (COMMAND_HISTORY_SIZE–1);

PredictMovement(prevframe, frame);
}

MoveObjects();

510 Tutorial 5 / Creating Your Online Game

client.cpp File

This file contains the game logic, meaning that here we have the func-
tions that move the players and check for bullet or flag hits. The file in
its entirety is listed here:

#include "common.h"

//---
// Name: empty()
// Desc:
//---
CArmyWar::CArmyWar()
{

networkClient = new dreamClient;
clientList = NULL;
localClient = NULL;
clients = 0;

memset(&inputClient, 0, sizeof(clientData));
memset(&mapdata, 0, sizeof(mapdata));

frametime = 0.0f;

inProgress = false;
init = false;

scrollX = 0;
scrollY = 0;

tileScrollX = 0;
tileScrollY = 0;

gameIndex = 0;

targetRotation = 0.0f;

redScore = 0;
blueScore = 0;

playerWithFlag = NULL;

next = NULL;
}

//---
// Name: empty()
// Desc:
//---
CArmyWar::~CArmyWar()
{

delete networkClient;

Tutorial 5 / Creating Your Online Game 511

}

//---
// Name: empty()
// Desc:
//---
void CArmyWar::InitializeEngine(void)
{

// Init the graphics engine
GFX_Init("Army War Engine v2.0", 640, 480, 16, 0, ApplicationProc);

// Load required graphics
GFX_LoadBitmap(&grass, "gfx\\grass.bmp");
GFX_LoadBitmap(&redman, "gfx\\redman.bmp");
GFX_LoadBitmap(&blueman, "gfx\\blueman.bmp");
GFX_LoadBitmap(&tree, "gfx\\tree.bmp");
GFX_LoadBitmap(&redtarget, "gfx\\redtarget.bmp");
GFX_LoadBitmap(&bluetarget, "gfx\\bluetarget.bmp");
GFX_LoadBitmap(&flag, "gfx\\flag.bmp");

GFX_LoadBitmap(&rednumbers[0], "gfx\\red0.bmp");
GFX_LoadBitmap(&rednumbers[1], "gfx\\red1.bmp");
GFX_LoadBitmap(&rednumbers[2], "gfx\\red2.bmp");
GFX_LoadBitmap(&rednumbers[3], "gfx\\red3.bmp");
GFX_LoadBitmap(&rednumbers[4], "gfx\\red4.bmp");
GFX_LoadBitmap(&rednumbers[5], "gfx\\red5.bmp");
GFX_LoadBitmap(&rednumbers[6], "gfx\\red6.bmp");
GFX_LoadBitmap(&rednumbers[7], "gfx\\red7.bmp");
GFX_LoadBitmap(&rednumbers[8], "gfx\\red8.bmp");
GFX_LoadBitmap(&rednumbers[9], "gfx\\red9.bmp");

GFX_LoadBitmap(&bluenumbers[0], "gfx\\blue0.bmp");
GFX_LoadBitmap(&bluenumbers[1], "gfx\\blue1.bmp");
GFX_LoadBitmap(&bluenumbers[2], "gfx\\blue2.bmp");
GFX_LoadBitmap(&bluenumbers[3], "gfx\\blue3.bmp");
GFX_LoadBitmap(&bluenumbers[4], "gfx\\blue4.bmp");
GFX_LoadBitmap(&bluenumbers[5], "gfx\\blue5.bmp");
GFX_LoadBitmap(&bluenumbers[6], "gfx\\blue6.bmp");
GFX_LoadBitmap(&bluenumbers[7], "gfx\\blue7.bmp");
GFX_LoadBitmap(&bluenumbers[8], "gfx\\blue8.bmp");
GFX_LoadBitmap(&bluenumbers[9], "gfx\\blue9.bmp");

// Set the scroll positions
scrollX = 40*32;

if(localClient->team == RED_TEAM)
scrollY = 90*32;

else
scrollY = 0;

// Set the flag position
flagX = 49*32;
flagY = 49*32;

512 Tutorial 5 / Creating Your Online Game

playerWithFlag = NULL;

// Reset score counters
redScore = 0;
blueScore = 0;

}

//---
// Name: empty()
// Desc:
//---
void CArmyWar::Shutdown(void)
{

Disconnect();

GFX_Begin();
GFX_Shutdown();
GFX_End();

}

//---
// Name: empty()
// Desc:
//---
void CArmyWar::DrawMap(void)
{

int heading = 0;

// Work out how many tiles have been scrolled
tileScrollX = scrollX/32;
tileScrollY = scrollY/32;

for(int i = (tileScrollX)–2; i < (tileScrollX)+21; i++)
{

for(int j = (tileScrollY)+15; j > (tileScrollY)–2; j—)
{

GFX_Blit(&grass, (32*i)–(scrollX),(32*j)–(scrollY), 32,
32, 0);

// Draw a tree if required
if(mapdata[i][j] == true)
{

GFX_Blit(&tree, (32*i+16)–(scrollX),(32*j+16)–
(scrollY), 32, 32, 0);

}

// Draw the static targets
if(i==49 && j==3)
{

// draw the blue target
GFX_Blit(&bluetarget, (32*i)–(scrollX),(32*j)–

(scrollY), 32, 32, targetRotation);
}

Tutorial 5 / Creating Your Online Game 513

if(i==49 && j==97)
{

// draw the red target
GFX_Blit(&redtarget, (32*i)–(scrollX),(32*j)–

(scrollY), 32, 32, targetRotation);
}

}
}

// Render the flag
GFX_Blit(&flag, ((int) flagX)–(scrollX), ((int) flagY)–(scrollY),

32, 32, 0);

// Render players
clientData *list = clientList;

for(; list != NULL; list = list->next)
{

if(list->team == RED_TEAM)
{

GFX_Blit(&redman, ((int) list->command.origin.x)–(scrollX),
((int) list->command.origin.y)–(scrollY),
32, 32, (float) list->command.heading);

}

if(list->team == BLUE_TEAM)
{

GFX_Blit(&blueman, ((int) list->command.origin.x)–
(scrollX), ((int) list->command.origin.y)–
(scrollY), 32, 32, (float) list->command.heading);

}

// Render bullets
if(list->command.bullet.shot)
{

if(list->team == RED_TEAM)
{

GFX_RectFill(((int) list->command.bullet.origin.x–2)–
(scrollX), ((int) list->
command.bullet.origin.y–2)–(scrollY),
((int) list->command.bullet.origin.x+2)–
(scrollX), ((int) list->
command.bullet.origin.y+2)–(scrollY),
200, 0, 0);

}

if(list->team == BLUE_TEAM)
{

GFX_RectFill(((int) list->command.bullet.origin.x–2)–
(scrollX), ((int) list->
command.bullet.origin.y–2)–(scrollY),
((int) list->command.bullet.origin.x+2)–
(scrollX), ((int) list->

514 Tutorial 5 / Creating Your Online Game

command.bullet.origin.y+2)–(scrollY),
0, 0, 200);

}
}

}

// Finally, render the team scores
GFX_Blit(&rednumbers[redScore], 5, 410, 64, 64, 0);
GFX_Blit(&bluenumbers[blueScore], 570, 410, 64, 64, 0);

}

//---
// Name: empty()
// Desc:
//---
void CArmyWar::Frame(void)
{

if(!localClient)
return;

// Scroll the map to follow the local player
if((localClient->command.origin.x – scrollX) > 340)
{

if(scrollX <= 3200–(19*32)–2)
scrollX += 2;

}

if((localClient->command.origin.x – scrollX) < 300)
{

if(scrollX >= 2)
scrollX –= 2;

}

if((localClient->command.origin.y – scrollY) > 260)
{

if(scrollY <= 3200–(15*32)–2)
scrollY += 2;

}

if((localClient->command.origin.y – scrollY) < 220)
{

if(scrollY >= 2)
scrollY –= 2;

}

// Move the flag with the player
if(playerWithFlag)
{

flagX = playerWithFlag->command.origin.x;
flagY = playerWithFlag->command.origin.y;

}

// Rotate the target images
if(targetRotation < 360)

Tutorial 5 / Creating Your Online Game 515

targetRotation += 1;
else

targetRotation –= targetRotation;

// Draw map
GFX_Begin();
{

DrawMap();
}
GFX_End();

}

//---
// Name: empty()
// Desc:
//---
void CArmyWar::CheckVictory(void)
{

if(localClient == NULL)
return;

// Check team scores
if(redScore > 1)
{

if(localClient->team == RED_TEAM)
{

MessageBox(NULL, "Your team (RED) won!", "Victory", MB_OK);
}
else
{

MessageBox(NULL, "The other team (RED) won", "Failure",
MB_OK);

}

Shutdown();
}
if(blueScore > 1)
{

if(localClient->team == BLUE_TEAM)
{

MessageBox(NULL, "Your team (BLUE) won!", "Victory",
MB_OK);

}
else
{

MessageBox(NULL, "The other team (BLUE) won", "Failure",
MB_OK);

}

Shutdown();
}

}

516 Tutorial 5 / Creating Your Online Game

//---
// Name: empty()
// Desc:
//---
void CArmyWar::KillPlayer(int index)
{

LogString("Player %d died", index);

clientData *client = GetClientPointer(index);

if(client == NULL)
return;

client->command.origin.x = client->startPos.x;
client->command.origin.y = client->startPos.y;

}

//---
// Name: empty()
// Desc:
//---
clientData *CArmyWar::GetClientPointer(int index)
{

for(clientData *clList = clientList; clList != NULL; clList =
clList->next)

{
if(clList->index == index)

return clList;
}

return NULL;
}

//---
// Name: empty()
// Desc:
//---
void CArmyWar::CheckKeys(void)
{

inputClient.command.key = 0;

if(keys[VK_ESCAPE])
{

Shutdown();

keys[VK_ESCAPE] = false;
}

if(keys[VK_DOWN])
{

inputClient.command.key |= KEY_DOWN;
}

if(keys[VK_UP])

Tutorial 5 / Creating Your Online Game 517

{
inputClient.command.key |= KEY_UP;

}

if(keys[VK_LEFT])
{

inputClient.command.key |= KEY_LEFT;
}

if(keys[VK_RIGHT])
{

inputClient.command.key |= KEY_RIGHT;
}

if(keys[VK_SPACE])
{

inputClient.command.key |= KEY_WEAPON;
}

inputClient.command.msec = (int) (frametime * 1000);
}

//---
// Name: empty()
// Desc:
//---
void CArmyWar::CheckPredictionError(int a)
{

if(a < 0 && a > COMMAND_HISTORY_SIZE)
return;

float errorX = localClient->serverFrame.origin.x –
localClient->frame[a].predictedOrigin.x;

float errorY = localClient->serverFrame.origin.y –
localClient->frame[a].predictedOrigin.y;

// Fix the prediction error
if((errorX != 0.0f) || (errorY != 0.0f))
{

localClient->frame[a].predictedOrigin.x = localClient->
serverFrame.origin.x;

localClient->frame[a].predictedOrigin.y = localClient->
serverFrame.origin.y;

localClient->frame[a].vel.x = localClient->serverFrame.vel.x;
localClient->frame[a].vel.y = localClient->serverFrame.vel.y;

LogString("Prediction error for frame %d: %f, %f\n", a,
errorX, errorY);

}
}

518 Tutorial 5 / Creating Your Online Game

//---
// Name: empty()
// Desc:
//---
void CArmyWar::CheckBulletPredictionError(int a)
{

if(a < 0 && a > COMMAND_HISTORY_SIZE)
return;

float errorX = localClient->serverFrame.bullet.origin.x – localClient->
frame[a].bullet.predictedOrigin.x;

float errorY = localClient->serverFrame.bullet.origin.y – localClient->
frame[a].bullet.predictedOrigin.y;

// Fix the prediction error
if((errorX != 0.0f) || (errorY != 0.0f))
{

localClient->frame[a].bullet.predictedOrigin.x = localClient->
serverFrame.bullet.origin.x;

localClient->frame[a].bullet.predictedOrigin.y = localClient->
serverFrame.bullet.origin.y;

localClient->frame[a].bullet.vel.x = localClient->
serverFrame.bullet.vel.x;

localClient->frame[a].bullet.vel.y = localClient->
serverFrame.bullet.vel.y;

LogString("Bullet prediction error for frame %d:
%f, %f\n", a, errorX, errorY);

}
}

//---
// Name: empty()
// Desc:
//---
void CArmyWar::CalculateVelocity(command_t *command, float frametime)
{

int checkX;
int checkY;

float multiplier = 100.0f;

command->vel.x = 0.0f;
command->vel.y = 0.0f;

if(command->key & KEY_UP)
{

checkX = (int) (command->origin.x / 32.0f);
checkY = (int) ((command->origin.y – multiplier * frametime) /

32.0f);

if(mapdata[checkX][checkY] == false)
command->vel.y += –multiplier * frametime;

Tutorial 5 / Creating Your Online Game 519

}

if(command->key & KEY_DOWN)
{

checkX = (int) (command->origin.x / 32.0f);
checkY = (int) ((command->origin.y + multiplier * frametime) /

32.0f);

if(mapdata[checkX][checkY] == false)
command->vel.y += multiplier * frametime;

}

if(command->key & KEY_LEFT)
{

checkX = (int) ((command->origin.x – multiplier * frametime) /
32.0f);

checkY = (int) (command->origin.y / 32.0f);

if(mapdata[checkX][checkY] == false)
command->vel.x += –multiplier * frametime;

}

if(command->key & KEY_RIGHT)
{

checkX = (int) ((command->origin.x + multiplier * frametime) /
32.0f);

checkY = (int) (command->origin.y / 32.0f);

if(mapdata[checkX][checkY] == false)
command->vel.x += multiplier * frametime;

}
}

//---
// Name: empty()
// Desc:
//---
void CArmyWar::CalculateHeading(command_t *command)
{

// Right
if((command->vel.x > 0.0f) &&

(command->vel.y == 0.0f))
{

command->heading = EAST;
}

// Left
if((command->vel.x < 0.0f) &&

(command->vel.y == 0.0f))
{

command->heading = WEST;
}

520 Tutorial 5 / Creating Your Online Game

// Down
if((command->vel.y > 0.0f) &&

(command->vel.x == 0.0f))
{

command->heading = SOUTH;
}

// Up
if((command->vel.y < 0.0f) &&

(command->vel.x == 0.0f))
{

command->heading = NORTH;
}

// Down-Right
if((command->vel.x > 0.0f) &&

(command->vel.y > 0.0f))
{

command->heading = SOUTHEAST;
}

// Up-Right
if((command->vel.x > 0.0f) &&

(command->vel.y < 0.0f))
{

command->heading = NORTHEAST;
}

// Down-Left
if((command->vel.x < 0.0f) &&

(command->vel.y > 0.0f))
{

command->heading = SOUTHWEST;
}

// Up-Left
if((command->vel.x < 0.0f) &&

(command->vel.y < 0.0f))
{

command->heading = NORTHWEST;
}

}

//---
// Name: empty()
// Desc:
//---
void CArmyWar::CalculateBulletVelocity(command_t *command)
{

command->bullet.shot = true;

if(command->heading == NORTH)
{

command->bullet.vel.x = 0.0f;

Tutorial 5 / Creating Your Online Game 521

command->bullet.vel.y = –200.0f;
}
if(command->heading == SOUTH)
{

command->bullet.vel.x = 0.0f;
command->bullet.vel.y = 200.0f;

}
if(command->heading == EAST)
{

command->bullet.vel.x = 200.0f;
command->bullet.vel.y = 0.0f;

}
if(command->heading == WEST)
{

command->bullet.vel.x = –200.0f;
command->bullet.vel.y = 0.0f;

}

if(command->heading == NORTHEAST)
{

command->bullet.vel.x = 200.0f;
command->bullet.vel.y = –200.0f;

}
if(command->heading == NORTHWEST)
{

command->bullet.vel.x = –200.0f;
command->bullet.vel.y = –200.0f;

}
if(command->heading == SOUTHEAST)
{

command->bullet.vel.x = 200.0f;
command->bullet.vel.y = 200.0f;

}
if(command->heading == SOUTHWEST)
{

command->bullet.vel.x = –200.0f;
command->bullet.vel.y = 200.0f;

}
}

//---
// Name: empty()
// Desc:
//---
void CArmyWar::PredictMovement(int prevFrame, int curFrame)
{

if(!localClient)
return;

float frametime = inputClient.frame[curFrame].msec / 1000.0f;

localClient->frame[curFrame].key = inputClient.frame[curFrame].key;

//

522 Tutorial 5 / Creating Your Online Game

// Player ->
//

// Process commands
CalculateVelocity(&localClient->frame[curFrame], frametime);
CalculateHeading(&localClient->frame[curFrame]);

// Calculate new predicted origin
localClient->frame[curFrame].predictedOrigin.x =

localClient->frame[prevFrame].predictedOrigin.x +
localClient->frame[curFrame].vel.x;

localClient->frame[curFrame].predictedOrigin.y =
localClient->frame[prevFrame].predictedOrigin.y +
localClient->frame[curFrame].vel.y;

// Copy values to "current" values
localClient->command.predictedOrigin.x = localClient->

frame[curFrame].predictedOrigin.x;
localClient->command.predictedOrigin.y = localClient->

frame[curFrame].predictedOrigin.y;
localClient->command.vel.x = localClient->frame[curFrame].vel.x;
localClient->command.vel.y = localClient->frame[curFrame].vel.y;
localClient->command.heading = localClient->frame[curFrame].heading;

//
// Bullet ->
//

// First set the previous values
localClient->frame[curFrame].bullet.shot = localClient->

frame[prevFrame].bullet.shot;
localClient->frame[curFrame].bullet.vel.x = localClient->

frame[prevFrame].bullet.vel.x;
localClient->frame[curFrame].bullet.vel.y = localClient->

frame[prevFrame].bullet.vel.y;
localClient->frame[curFrame].bullet.lifetime = localClient->

frame[prevFrame].bullet.lifetime;

// The bullet is carried by the player
if(localClient->frame[curFrame].bullet.shot == false)
{

localClient->frame[curFrame].bullet.predictedOrigin.x =
localClient->frame[curFrame].predictedOrigin.x;

localClient->frame[curFrame].bullet.predictedOrigin.y =
localClient->frame[curFrame].predictedOrigin.y;

}
else
{

localClient->frame[curFrame].bullet.lifetime += (int) (frametime
* 1000.0f);

if(localClient->frame[curFrame].bullet.lifetime > 2000)

Tutorial 5 / Creating Your Online Game 523

{
localClient->frame[curFrame].bullet.shot = false;
localClient->frame[curFrame].bullet.lifetime = 0;

localClient->frame[curFrame].bullet.predictedOrigin.x =
localClient->frame[curFrame].predictedOrigin.x;

localClient->frame[curFrame].bullet.predictedOrigin.y =
localClient->frame[curFrame].predictedOrigin.y;

}
}

// Calculate the heading for the bullet only when firing
if(localClient->frame[curFrame].key & KEY_WEAPON &&

localClient->frame[curFrame].bullet.shot == false)
{

CalculateBulletVelocity(&localClient->frame[curFrame]);
}

// If the bullet is in the air (shot), update its origin
if(localClient->frame[curFrame].bullet.shot)
{

localClient->frame[curFrame].bullet.predictedOrigin.x =
localClient->frame[prevFrame].bullet.predictedOrigin.x +
localClient->frame[curFrame].bullet.vel.x * frametime;

localClient->frame[curFrame].bullet.predictedOrigin.y =
localClient->frame[prevFrame].bullet.predictedOrigin.y +
localClient->frame[curFrame].bullet.vel.y * frametime;

}

// Copy values to "current" values
localClient->command.bullet.predictedOrigin.x = localClient->

frame[curFrame].bullet.predictedOrigin.x;
localClient->command.bullet.predictedOrigin.y = localClient->

frame[curFrame].bullet.predictedOrigin.y;
localClient->command.bullet.vel.x = localClient->

frame[curFrame].bullet.vel.x;
localClient->command.bullet.vel.y = localClient->

frame[curFrame].bullet.vel.y;
}

//---
// Name: empty()
// Desc:
//---
void CArmyWar::MoveObjects(void)
{

if(!localClient)
return;

clientData *client = clientList;

for(; client != NULL; client = client->next)
{

524 Tutorial 5 / Creating Your Online Game

// Remote players
if(client != localClient)
{

CalculateVelocity(&client->command, frametime);
CalculateHeading(&client->command);

client->command.origin.x += client->command.vel.x;
client->command.origin.y += client->command.vel.y;

client->command.bullet.origin.x += client->
serverFrame.bullet.vel.x * frametime;

client->command.bullet.origin.y += client->
serverFrame.bullet.vel.y * frametime;

}

// Local player
else
{

client->command.origin.x = client->
command.predictedOrigin.x;

client->command.origin.y = client->
command.predictedOrigin.y;

client->command.bullet.origin.x = client->
command.bullet.predictedOrigin.x;

client->command.bullet.origin.y = client->
command.bullet.predictedOrigin.y;

}
}

}

CArmyWar Constructor and Destructor Functions

These two functions initialize and uninitialize the CArmyWar object
that contains game-specific data. The constructor allocates memory and
sets all the variables to initial states. The destructor frees the allocated
memory, which is very important (otherwise we would have a memory
leak).

CArmyWar::CArmyWar()
{

networkClient = new dreamClient;
clientList = NULL;
localClient = NULL;
clients = 0;

memset(&inputClient, 0, sizeof(clientData));
memset(&mapdata, 0, sizeof(mapdata));

frametime = 0.0f;

inProgress = false;

Tutorial 5 / Creating Your Online Game 525

init = false;

scrollX = 0;
scrollY = 0;

tileScrollX = 0;
tileScrollY = 0;

gameIndex = 0;

targetRotation = 0.0f;

redScore = 0;
blueScore = 0;

playerWithFlag = NULL;

next = NULL;
}

CArmyWar::~CArmyWar()
{

delete networkClient;
}

InitializeEngine Function

We are still initializing things with this function. This one’s purpose is
to initialize 2DLIB — our graphics engine — and load the graphics into
memory. It also sets the flag to its correct initial position and moves the
screen (scrolls) to the correct position, based on which team the local
player is on. Notice how the team score bitmaps are loaded into an
array, so we can use the team scores as an index to that array to get the
correct bitmap number.

void CArmyWar::InitializeEngine(void)
{

// Init the graphics engine
GFX_Init("Army War Engine v2.0", 640, 480, 16, 0, ApplicationProc);

// Load required graphics
GFX_LoadBitmap(&grass, "gfx\\grass.bmp");
GFX_LoadBitmap(&redman, "gfx\\redman.bmp");
GFX_LoadBitmap(&blueman, "gfx\\blueman.bmp");
GFX_LoadBitmap(&tree, "gfx\\tree.bmp");
GFX_LoadBitmap(&redtarget, "gfx\\redtarget.bmp");
GFX_LoadBitmap(&bluetarget, "gfx\\bluetarget.bmp");
GFX_LoadBitmap(&flag, "gfx\\flag.bmp");

GFX_LoadBitmap(&rednumbers[0], "gfx\\red0.bmp");
GFX_LoadBitmap(&rednumbers[1], "gfx\\red1.bmp");
GFX_LoadBitmap(&rednumbers[2], "gfx\\red2.bmp");
GFX_LoadBitmap(&rednumbers[3], "gfx\\red3.bmp");

526 Tutorial 5 / Creating Your Online Game

GFX_LoadBitmap(&rednumbers[4], "gfx\\red4.bmp");
GFX_LoadBitmap(&rednumbers[5], "gfx\\red5.bmp");
GFX_LoadBitmap(&rednumbers[6], "gfx\\red6.bmp");
GFX_LoadBitmap(&rednumbers[7], "gfx\\red7.bmp");
GFX_LoadBitmap(&rednumbers[8], "gfx\\red8.bmp");
GFX_LoadBitmap(&rednumbers[9], "gfx\\red9.bmp");

GFX_LoadBitmap(&bluenumbers[0], "gfx\\blue0.bmp");
GFX_LoadBitmap(&bluenumbers[1], "gfx\\blue1.bmp");
GFX_LoadBitmap(&bluenumbers[2], "gfx\\blue2.bmp");
GFX_LoadBitmap(&bluenumbers[3], "gfx\\blue3.bmp");
GFX_LoadBitmap(&bluenumbers[4], "gfx\\blue4.bmp");
GFX_LoadBitmap(&bluenumbers[5], "gfx\\blue5.bmp");
GFX_LoadBitmap(&bluenumbers[6], "gfx\\blue6.bmp");
GFX_LoadBitmap(&bluenumbers[7], "gfx\\blue7.bmp");
GFX_LoadBitmap(&bluenumbers[8], "gfx\\blue8.bmp");
GFX_LoadBitmap(&bluenumbers[9], "gfx\\blue9.bmp");

// Set the scroll positions
scrollX = 40*32;

if(localClient->team == RED_TEAM)
scrollY = 90*32;

else
scrollY = 0;

// Set the flag position
flagX = 49*32;
flagY = 49*32;

playerWithFlag = NULL;

// Reset score counters
redScore = 0;
blueScore = 0;

}

Shutdown Function

The Shutdown function disconnects from the server (if connected)
and shuts down the graphics engine.

void CArmyWar::Shutdown(void)
{

Disconnect();

GFX_Begin();
GFX_Shutdown();
GFX_End();

}

Tutorial 5 / Creating Your Online Game 527

DrawMap Function

Now we finally get to do something besides initializing things. This
function draws the game map, trees, grass, players, flag, and bullets.
First we need to figure out their positions on the screen by looking at
the scroll coordinates. One tile is 32 pixels in height and width, so it is
easy to calculate which tiles to draw. Just divide the actual pixel scroll
values by 32, and you get the first tiles to draw (top-left corner). Then
we loop through the visible tiles and draw what lies in that tile. To get
the correct position on screen, you need to multiply the tile scroll value
by 32 and then subtract the pixel scroll value from that.

void CArmyWar::DrawMap(void)
{

int heading = 0;

// Work out how many tiles have been scrolled
tileScrollX = scrollX/32;
tileScrollY = scrollY/32;

for(int i = (tileScrollX)–2; i < (tileScrollX)+21; i++)
{

for(int j = (tileScrollY)+15; j > (tileScrollY)–2; j—)
{

GFX_Blit(&grass, (32*i)–(scrollX),(32*j)–(scrollY), 32,
32, 0);

// Draw a tree if required
if(mapdata[i][j] == true)
{

GFX_Blit(&tree, (32*i+16)–(scrollX),(32*j+16)–
(scrollY), 32, 32, 0);

}

// Draw the static targets
if(i==49 && j==3)
{

// draw the blue target
GFX_Blit(&bluetarget, (32*i)–(scrollX),(32*j)–

(scrollY), 32, 32, targetRotation);
}

if(i==49 && j==97)
{

// draw the red target
GFX_Blit(&redtarget, (32*i)–(scrollX),(32*j)–

(scrollY), 32, 32, targetRotation);
}

}
}

528 Tutorial 5 / Creating Your Online Game

// Render the flag
GFX_Blit(&flag, ((int) flagX)–(scrollX), ((int) flagY)–(scrollY),

32, 32, 0);

// Render players
clientData *list = clientList;

for(; list != NULL; list = list->next)
{

if(list->team == RED_TEAM)
{

GFX_Blit(&redman, ((int) list->command.origin.x)–(scrollX),
((int) list->command.origin.y)–(scrollY),
32, 32, (float) list->command.heading);

}

if(list->team == BLUE_TEAM)
{

GFX_Blit(&blueman, ((int) list->command.origin.x)–
(scrollX), ((int) list->command.origin.y)–
(scrollY), 32, 32, (float) list->command.heading);

}

// Render bullets
if(list->command.bullet.shot)
{

if(list->team == RED_TEAM)
{

GFX_RectFill(((int) list->command.bullet.origin.x–2)–
(scrollX), ((int) list->
command.bullet.origin.y–2)–(scrollY),
((int) list->command.bullet.origin.x+2)–
(scrollX), ((int) list->
command.bullet.origin.y+2)–(scrollY),
200, 0, 0);

}

if(list->team == BLUE_TEAM)
{

GFX_RectFill(((int) list->command.bullet.origin.x–2)–
(scrollX), ((int) list->
command.bullet.origin.y–2)–(scrollY),
((int) list->
command.bullet.origin.x+2)–(scrollX),
((int) list->command.bullet.origin.y+2)–
(scrollY), 0, 0, 200);

}
}

}

// Finally, render the team scores
GFX_Blit(&rednumbers[redScore], 5, 410, 64, 64, 0);
GFX_Blit(&bluenumbers[blueScore], 570, 410, 64, 64, 0);

}

Tutorial 5 / Creating Your Online Game 529

Here we draw a tree by looking at the map data. If the value on that tile
is 1 (or true in other words), we draw a tree. Otherwise, we draw only
plain grass.

// Draw a tree if required
if(mapdata[i][j] == true)
{

GFX_Blit(&tree, (32*i+16)–(scrollX),(32*j+16)–(scrollY), 32, 32, 0);
}

Frame Function

This function’s purpose is to handle the game logic. It scrolls the
screen by trying to follow the player’s position. Also, if someone is car-
rying the flag, the flag is moved with the player. The teams’ base
indicators are rotated to add some graphical effects. Finally, the map is
drawn with the current positions.

void CArmyWar::Frame(void)
{

if(!localClient)
return;

// Scroll the map to follow the local player
if((localClient->command.origin.x – scrollX) > 340)
{

if(scrollX <= 3200–(19*32)–2)
scrollX += 2;

}

if((localClient->command.origin.x – scrollX) < 300)
{

if(scrollX >= 2)
scrollX –= 2;

}

if((localClient->command.origin.y – scrollY) > 260)
{

if(scrollY <= 3200–(15*32)–2)
scrollY += 2;

}

if((localClient->command.origin.y – scrollY) < 220)
{

if(scrollY >= 2)
scrollY –= 2;

}

// Move the flag with the player
if(playerWithFlag)
{

flagX = playerWithFlag->command.origin.x;
flagY = playerWithFlag->command.origin.y;

530 Tutorial 5 / Creating Your Online Game

}

// Rotate the target images
if(targetRotation < 360)

targetRotation += 1;
else

targetRotation -= targetRotation;

// Draw map
GFX_Begin();
{

DrawMap();
}
GFX_End();

}

CheckVictory Function

This function checks the victory conditions. If they are met, it notifies
the player whose team won the game and then shuts down the game
engine after the player presses the OK button.

void CArmyWar::CheckVictory(void)
{

if(localClient == NULL)
return;

// Check team scores
if(redScore > 1)
{

if(localClient->team == RED_TEAM)
{

MessageBox(NULL, "Your team (RED) won!", "Victory", MB_OK);
}
else
{

MessageBox(NULL, "The other team (RED) won", "Failure",
MB_OK);

}

Shutdown();
}
if(blueScore > 1)
{

if(localClient->team == BLUE_TEAM)
{

MessageBox(NULL, "Your team (BLUE) won!", "Victory",
MB_OK);

}
else
{

MessageBox(NULL, "The other team (BLUE) won", "Failure",
MB_OK);

Tutorial 5 / Creating Your Online Game 531

}

Shutdown();
}

}

KillPlayer Function

The KillPlayer function makes sure that when a player is shot, the
player is moved back to the start position. This function fixes the pre-
diction error that would occur if the server only sent the new position
(without this function, the client would keep the shot player at the posi-
tion where he or she was shot).

void CArmyWar::KillPlayer(int index)
{

LogString("Player %d died", index);

clientData *client = GetClientPointer(index);

if(client == NULL)
return;

client->command.origin.x = client->startPos.x;
client->command.origin.y = client->startPos.y;

}

GetClientPointer Function

This function returns a pointer to a player in the client list, and the
player is chosen with the player index number given as a parameter. If
no such index number is found, the function returns NULL, so we must
check the result before using it.

clientData *CArmyWar::GetClientPointer(int index)
{

for(clientData *clList = clientList; clList != NULL; clList =
clList->next)

{
if(clList->index == index)

return clList;
}

return NULL;
}

CheckKeys Function

Here we check the input keys and set the commands to correspond to
keypresses. Notice that we use inputClient here. At the beginning
of the function we reset the commands because we check the com-
mands every frame.

532 Tutorial 5 / Creating Your Online Game

void CArmyWar::CheckKeys(void)
{

inputClient.command.key = 0;

if(keys[VK_ESCAPE])
{

Shutdown();

keys[VK_ESCAPE] = false;
}

if(keys[VK_DOWN])
{

inputClient.command.key |= KEY_DOWN;
}

if(keys[VK_UP])
{

inputClient.command.key |= KEY_UP;
}

if(keys[VK_LEFT])
{

inputClient.command.key |= KEY_LEFT;
}

if(keys[VK_RIGHT])
{

inputClient.command.key |= KEY_RIGHT;
}

if(keys[VK_SPACE])
{

inputClient.command.key |= KEY_WEAPON;
}

inputClient.command.msec = (int) (frametime * 1000);
}

CheckPredictionError Function

This function might seem a little bit odd at first, but it really is not odd
at all. It compares the frame received from the server and the frame
produced by the local client. If there is any difference between them,
the server’s frame is used. In other words, we always use the server’s
frame, but because the server sends us frame data in 100 ms intervals
we need to produce the frames in between ourselves. As there is no
way to determine when exactly the server gives us the next frame, we
check every frame the server gives us. When the server gives us a new
frame, it is actually old already (because of network lag and other pro-
cessing times). So we have to compare an old frame that is stored in
our frame history (or command history). If there is an error, the client

Tutorial 5 / Creating Your Online Game 533

fixes the error in the past frame and reproduces all the frames all the
way to the current one. This is seen in the RunNetwork() function
(network.cpp).

void CArmyWar::CheckPredictionError(int a)
{

if(a < 0 && a > COMMAND_HISTORY_SIZE)
return;

float errorX =
localClient->serverFrame.origin.x – localClient->

frame[a].predictedOrigin.x;

float errorY =
localClient->serverFrame.origin.y – localClient->

frame[a].predictedOrigin.y;

// Fix the prediction error
if((errorX != 0.0f) || (errorY != 0.0f))
{

localClient->frame[a].predictedOrigin.x = localClient->
serverFrame.origin.x;

localClient->frame[a].predictedOrigin.y = localClient->
serverFrame.origin.y;

localClient->frame[a].vel.x = localClient->serverFrame.vel.x;
localClient->frame[a].vel.y = localClient->serverFrame.vel.y;

LogString("Prediction error for frame %d: %f, %f\n", a,
errorX, errorY);

}
}

CheckBulletPredictionError Function

This function is similar to the CheckPredictionError() function,
except that this one is for bullets.

void CArmyWar::CheckBulletPredictionError(int a)
{

if(a < 0 && a > COMMAND_HISTORY_SIZE)
return;

float errorX = localClient->serverFrame.bullet.origin.x – localClient->
frame[a].bullet.predictedOrigin.x;

float errorY = localClient->serverFrame.bullet.origin.y – localClient->
frame[a].bullet.predictedOrigin.y;

// Fix the prediction error
if((errorX != 0.0f) || (errorY != 0.0f))
{

localClient->frame[a].bullet.predictedOrigin.x = localClient->
serverFrame.bullet.origin.x;

localClient->frame[a].bullet.predictedOrigin.y = localClient->

534 Tutorial 5 / Creating Your Online Game

serverFrame.bullet.origin.y;

localClient->frame[a].bullet.vel.x = localClient->
serverFrame.bullet.vel.x;

localClient->frame[a].bullet.vel.y = localClient->
serverFrame.bullet.vel.y;

LogString("Bullet prediction error for frame %d: %f, %f\n", a,
errorX, errorY);

}
}

CalculateVelocity Function

This function calculates the local player’s movement velocity (or direc-
tion really, as there is no acceleration). The function does some simple
collision detection by looking at the map data at the position to which
the player is moving. If there is a tree, the player moves nowhere.
Notice that we use frametime to make the player move the correct
amount in any given time. This is very, very important, especially in a
network game. It makes the players move the same amount on all the
computers in any given time (for example, if you keep the “up” key
pressed for one second).

void CArmyWar::CalculateVelocity(command_t *command, float frametime)
{

int checkX;
int checkY;

float multiplier = 100.0f;

command->vel.x = 0.0f;
command->vel.y = 0.0f;

if(command->key & KEY_UP)
{

checkX = (int) (command->origin.x / 32.0f);
checkY = (int) ((command->origin.y – multiplier * frametime) /

32.0f);

if(mapdata[checkX][checkY] == false)
command->vel.y += –multiplier * frametime;

}

if(command->key & KEY_DOWN)
{

checkX = (int) (command->origin.x / 32.0f);
checkY = (int) ((command->origin.y + multiplier * frametime) /

32.0f);

if(mapdata[checkX][checkY] == false)
command->vel.y += multiplier * frametime;

Tutorial 5 / Creating Your Online Game 535

}

if(command->key & KEY_LEFT)
{

checkX = (int) ((command->origin.x – multiplier * frametime) /
32.0f);

checkY = (int) (command->origin.y / 32.0f);

if(mapdata[checkX][checkY] == false)
command->vel.x += –multiplier * frametime;

}

if(command->key & KEY_RIGHT)
{

checkX = (int) ((command->origin.x + multiplier * frametime) /
32.0f);

checkY = (int) (command->origin.y / 32.0f);

if(mapdata[checkX][checkY] == false)
command->vel.x += multiplier * frametime;

}
}

CalculateHeading Function

This function is used to convert the player’s velocity to simple heading
values (in degrees).

void CArmyWar::CalculateHeading(command_t *command)
{

// Right
if((command->vel.x > 0.0f) &&

(command->vel.y == 0.0f))
{

command->heading = EAST;
}

// Left
if((command->vel.x < 0.0f) &&

(command->vel.y == 0.0f))
{

command->heading = WEST;
}

// Down
if((command->vel.y > 0.0f) &&

(command->vel.x == 0.0f))
{

command->heading = SOUTH;
}

// Up
if((command->vel.y < 0.0f) &&

(command->vel.x == 0.0f))

536 Tutorial 5 / Creating Your Online Game

{
command->heading = NORTH;

}

// Down-Right
if((command->vel.x > 0.0f) &&

(command->vel.y > 0.0f))
{

command->heading = SOUTHEAST;
}

// Up-Right
if((command->vel.x > 0.0f) &&

(command->vel.y < 0.0f))
{

command->heading = NORTHEAST;
}

// Down-Left
if((command->vel.x < 0.0f) &&

(command->vel.y > 0.0f))
{

command->heading = SOUTHWEST;
}

// Up-Left
if((command->vel.x < 0.0f) &&

(command->vel.y < 0.0f))
{

command->heading = NORTHWEST;
}

}

PredictMovement Function

This function produces the local frames, or in other words, predicts
player movement. It produces a frame and hopes it is the same as what
the server comes up with (and it will be the same if all the data reaches
the server and the client).

What the function does is take the previous frame and then add cur-
rent velocities to the previous positions. And that is mostly it. It also
updates some other variables, like the bullet lifetime, but it is updated
the same way as the positions: You take the previous lifetime value and
add current frametime.

void CArmyWar::PredictMovement(int prevFrame, int curFrame)
{

if(!localClient)
return;

float frametime = inputClient.frame[curFrame].msec / 1000.0f;

Tutorial 5 / Creating Your Online Game 537

localClient->frame[curFrame].key = inputClient.frame[curFrame].key;

//
// Player ->
//

// Process commands
CalculateVelocity(&localClient->frame[curFrame], frametime);
CalculateHeading(&localClient->frame[curFrame]);

// Calculate new predicted origin
localClient->frame[curFrame].predictedOrigin.x = localClient->

frame[prevFrame].predictedOrigin.x + localClient->
frame[curFrame].vel.x;

localClient->frame[curFrame].predictedOrigin.y = localClient->
frame[prevFrame].predictedOrigin.y + localClient->
frame[curFrame].vel.y;

// Copy values to "current" values
localClient->command.predictedOrigin.x = localClient->

frame[curFrame].predictedOrigin.x;
localClient->command.predictedOrigin.y = localClient->

frame[curFrame].predictedOrigin.y;
localClient->command.vel.x = localClient->frame[curFrame].vel.x;
localClient->command.vel.y = localClient->frame[curFrame].vel.y;
localClient->command.heading = localClient->frame[curFrame].heading;

//
// Bullet ->
//

// First set the previous values
localClient->frame[curFrame].bullet.shot = localClient->

frame[prevFrame].bullet.shot;
localClient->frame[curFrame].bullet.vel.x = localClient->

frame[prevFrame].bullet.vel.x;
localClient->frame[curFrame].bullet.vel.y = localClient->

frame[prevFrame].bullet.vel.y;
localClient->frame[curFrame].bullet.lifetime = localClient->

frame[prevFrame].bullet.lifetime;

// The bullet is carried by the player
if(localClient->frame[curFrame].bullet.shot == false)
{

localClient->frame[curFrame].bullet.predictedOrigin.x =
localClient->frame[curFrame].predictedOrigin.x;

localClient->frame[curFrame].bullet.predictedOrigin.y =
localClient->frame[curFrame].predictedOrigin.y;

}
else
{

538 Tutorial 5 / Creating Your Online Game

localClient->frame[curFrame].bullet.lifetime += (int) (frametime
* 1000.0f);

if(localClient->frame[curFrame].bullet.lifetime > 2000)
{

localClient->frame[curFrame].bullet.shot = false;
localClient->frame[curFrame].bullet.lifetime = 0;

localClient->frame[curFrame].bullet.predictedOrigin.x =
localClient->frame[curFrame].predictedOrigin.x;

localClient->frame[curFrame].bullet.predictedOrigin.y =
localClient->frame[curFrame].predictedOrigin.y;

}
}

// Calculate the heading for the bullet only when firing
if(localClient->frame[curFrame].key & KEY_WEAPON && localClient->

frame[curFrame].bullet.shot == false)
{

CalculateBulletVelocity(&localClient->frame[curFrame]);
}

// If the bullet is in the air (shot), update its origin
if(localClient->frame[curFrame].bullet.shot)
{

localClient->frame[curFrame].bullet.predictedOrigin.x =
localClient->frame[prevFrame].bullet.predictedOrigin.x +
localClient->frame[curFrame].bullet.vel.x * frametime;

localClient->frame[curFrame].bullet.predictedOrigin.y =
localClient->frame[prevFrame].bullet.predictedOrigin.y +
localClient->frame[curFrame].bullet.vel.y * frametime;

}

// Copy values to "current" values
localClient->command.bullet.predictedOrigin.x = localClient->

frame[curFrame].bullet.predictedOrigin.x;
localClient->command.bullet.predictedOrigin.y = localClient->

frame[curFrame].bullet.predictedOrigin.y;
localClient->command.bullet.vel.x = localClient->

frame[curFrame].bullet.vel.x;
localClient->command.bullet.vel.y = localClient->

frame[curFrame].bullet.vel.y;
}

MoveObjects Function

This function moves all the remote players and the local player to their
new positions. Then the map can be drawn to show the player posi-
tions. The remote players are moved by adding their last known
velocity to their current origin. The server tells us the real origin in
time, and there may be some warping if the client’s origin differs from
the server’s origin.

Tutorial 5 / Creating Your Online Game 539

This is one way to do it, but to get smoother movement, you could
add dead reckoning or client prediction on the remote players too. But
we will leave that to you.

void CArmyWar::MoveObjects(void)
{

if(!localClient)
return;

clientData *client = clientList;

for(; client != NULL; client = client->next)
{

// Remote players
if(client != localClient)
{

CalculateVelocity(&client->command, frametime);
CalculateHeading(&client->command);

client->command.origin.x += client->command.vel.x;
client->command.origin.y += client->command.vel.y;

client->command.bullet.origin.x += client->
serverFrame.bullet.vel.x * frametime;

client->command.bullet.origin.y += client->
serverFrame.bullet.vel.y * frametime;

}

// Local player
else
{

client->command.origin.x = client->
command.predictedOrigin.x;

client->command.origin.y = client->
command.predictedOrigin.y;

client->command.bullet.origin.x = client->
command.bullet.predictedOrigin.x;

client->command.bullet.origin.y = client->
command.bullet.predictedOrigin.y;

}
}

}

540 Tutorial 5 / Creating Your Online Game

lobby.cpp File

Now that we have the game data structures, we can implement the
functions we introduced in Tutorial 4.

RefreshGameList Function

This function refreshes the game list in the lobby dialog. First the con-
tents of the list are completely removed, and then everything is added
again to match the current game list. If a game is in progress, text is
added after the game’s name to inform us of that.

void CLobby::RefreshGameList(void)
{

char temp[128];

SendMessage(GetDlgItem(hWnd_LobbyDialog, IDC_GAMELIST),
LB_RESETCONTENT, 0, 0);

CArmyWar *list = gameList;

for(; list != NULL; list = list->next)
{

strcpy(temp, list->GetName());

if(list->GetInProgress())
{

strcat(temp, " (in progress)");
}

SendMessage(GetDlgItem(hWnd_LobbyDialog, IDC_GAMELIST),
LB_ADDSTRING, 0, (LPARAM) temp);

}
}

RefreshJoinedPlayersList Function

Here we refresh the list of joined players. The list is first reset so that
it can be filled again with the current information. Note that this func-
tion updates the list for both the game host and the players who joined
the game.

void CLobby::RefreshJoinedPlayersList(void)
{

if(localGame == NULL)
return;

SendMessage(GetDlgItem(hWnd_CreateViewPlayersDialog,
IDC_PLAYERSINGAME), LB_RESETCONTENT, 0, 0);

Tutorial 5 / Creating Your Online Game 541

SendMessage(GetDlgItem(hWnd_JoinGameDialog,
IDC_JOINPLAYERSINGAME), LB_RESETCONTENT, 0, 0);

clientData *list = localGame->GetClientList();

for(; list != NULL; list = list->next)
{

SendMessage(GetDlgItem(hWnd_CreateViewPlayersDialog,
IDC_PLAYERSINGAME), LB_ADDSTRING, 0,
(LPARAM) list->nickname);

SendMessage(GetDlgItem(hWnd_JoinGameDialog,
IDC_JOINPLAYERSINGAME), LB_ADDSTRING, 0,
(LPARAM) list->nickname);

}
}

Other Unimplemented Functions

The other unimplemented functions (AddGame, RemoveGame, and
RemoveGames), work the same way as they do on the server side, so
there is no need to explain them here. Only the AddGame function is
slightly different, as it has some new parameters. These parameters
only contain game information, such as the index number and “in-
progress” flag. These parameters do not affect the functionality of the
function; they are only stored in the game’s structure.

Summary

All good things must come to an end, and so ends this tutorial. Here we
covered the final version of the Army War v2.0 server and client. We
learned how to move the players and other objects in the game world,
not just by moving them on our local screen but also by moving them
on the server. We learned that the server is always right, not the client.
We also now know that by using frame time to calculate the amount of
movement in one frame, we can keep all the clients and the server in
sync.

Now that the 2D Army War game has been fully covered in this tuto-
rial and once you understand the concept of multiplayer game
programming, you can put your skills to the test by programming the
3D Army War engine (located on the companion CD) to include
multiplayer code. Try to understand which parts are essential to make
the code work on any game, and you will be able to make a 3D
multiplayer game. All you need is patience and time. Good luck!

542 Tutorial 5 / Creating Your Online Game

Index

* indicates the reference includes code listing.

2D library,
adding to workspace, 183
creating windowed application with,

184-189*
graphical functions, 190-193

2D library example,
loading graphics, 200-202*
moving primitives, 195-199*
rotating graphics, 200-202*

2D positions, displaying, 190

A
accept function, 128
account, creating, 316-319*
AddClient function, 293-295*, 333-334*,

366-367*
AddGame function, 478-479*
address classes, 107
address conversion, 133

functions, 133-134
address structures,

generic, 123
IPv4, 121-122
IPv6, 122

AddSequences function, 255*
adduser.tpl.html, 97*
alias naming restrictions, 20
ALTER TABLE command, 26-28
Apache web server,

installing PHP4 on, 60-63
setting up, 57-60

application,
creating, 184-189*
creating with dreamSock, 305-369*

application layer, 105
ApplicationProc function, 489*
arrays, using in PHP, 70

B
BeginReading function, 257*
big-endian order, 136
bind function, 125-126
blocking I/O, 169-170
blocking socket, 144
Broadcast function, 176-177*
broadcasting, 175
BuildDeltaMoveCommand function,

454-458*, 508-509*
BuildMoveCommand function, 453-454*
bullets,

calculating velocity of, 470-472*
comparing, 534-535*
moving, 472-475*

byte ordering, 136

C
CalculateBulletVelocity function, 470-472*
CalculateHeading function, 469-470*,

536-537*
CalculateVelocity function, 468-469*,

535-536*
CArmyWar class,

constructor, 525-526*
destructor, 525-526*
initializing, 525-526*
uninitializing, 525-526*

CArmyWarServer class methods, 437-449*,
458-467*

CheckBulletPredictionError function,
534-535*

CheckFlagCollisions function, 475-476*
CheckForTimeout function, 299-301*
CheckKeys function, 532-533*
CheckPredictionError function, 533-534*
CheckVictory function, 531-532*

543

Clear function, 253*
client application, creating, 306-338*
client list, 208

returning pointer to player in, 532*
client prediction, 429
client.cpp, 511-525*
client.h, 482-487*
ClientDlgProc callback procedure, 7-8
ClientProcess function

TCP, 155-157
UDP, 159-160

clients, 135-136
adding to client list, 293-295*,

333-334*, 366-367*
checking for timing out, 299-301*
connecting with server, 126
creating, 150, 481-542*
creating for game lobby, 371-405*
creating TCP, 151-153*
creating UDP, 157-159*
initializing, 268-269*
keeping alive, 336*
pinging, 293*
receiving packets from, 301-303*
removing from client list, 295-297*,

334-336*, 366-368
resetting, 270*
sending messages to, 290-293*
uninitializing, 269*

CLobby class methods, 389-398*
CLobbyServer class methods, 408-418*
close function, 129
closesocket function, 129
code, structuring, 73-78
colors, specifying, 190
column naming restrictions, 20
commands,

building, 453-458*
reading, 452-453*, 505-508*
sending, 451-452*, 502-504*

common.h, 310*, 340*, 488
concurrent server, 112, 135
conditional statements,

using in PHP, 68-70
using in SQL, 37-39

connect function, 126
Connect function, 337*, 403*, 504-505*
connected socket, 128

connection, starting, 502*
connectionless protocol, 109
connection-oriented protocol, 108
core.php, 74*, 76*
CREATE DATABASE command, 20-21
CREATE TABLE command, 25
CreateAccountDialogProc function,

316-319*
CreateGameDialogProc function, 380-381*
CreateThread function, 168-169
CreateViewPlayersDialogProc function,

380*
CSignin class, 308-309*

constructor, 329*
destructor, 329*
global variables, 316
methods, 323-329*

CSigninServer class, 339-340*
constructor, 361*
destructor, 361*
global variables, 347
methods, 355-361*

D
daemon, 18
daemonInit function, 351-352*
data,

adding to table, 30-32, 41
deleting from table, 34-35
importing, 44-46
linking, 42-43
modifying in table, 32-34
reading, 257-260*
receiving, 243-244*
receiving in socket, 131-133
relating, 42-43
removing, 84-90*
requesting, 401*
retrieving, 50-53*
sending, 208-209, 244-245*
sending to socket, 129-132
storing, 79-84*
updating, 53-55*, 84-90*
writing, 255*, 257*

data buffer,
dumping, 270*
retrieving point from, 254*
writing to, 255*

544

Index

data definition language, 19
using, 19-29

data input, 44-46
data link layer, 105
data manipulation language, 19, 29

using, 29-39
data types,

and platforms, 121
defining, 212-213
in MySQL, 22-23

database,
adding table to, 25
backing up to file, 47-49
connecting to, 50-53
connecting to with PHP script,

78-79*
creating, 20-21
creating relational, 40
dropping, 21-22
dropping table from, 28-29
modifying table in, 26-28
naming restrictions, 20
relational, 40
removing data from, 84-90*
restoring, 49
storing data in, 79-84*
updating data in, 84-90*
viewing, 19-20

database, relational, 40 see also database
datagram socket, 111-112
dead reckoning, 429
debug version, 12
DELETE command, 34-35
delta compression, 428-429
DESCRIBE command, 26
DialogBox function, 7
dialogs, see also windows

creating, 6-7*
creating for game lobby, 372-377

Disconnect function, 337*, 403-404*, 505*
doAddUser function, 84
Domain Name Service, 106
DrawMap function, 528-530*
dreamClient class, 226-228*

constructor, 268*
destructor, 268*
functionality of, 262-268*
variables, 260-262

dreamConsole
constructor, 215
destructor, 215

dreamMessage class, 225-226*
functionality of, 249-253*
variables, 249

dreamServer class, 228-229*
constructor, 289*
destructor, 289-290*
functionality of, 280-288*
variables, 280

dreamsock, 206
dreamSock, creating network application

with, 305-369*
dreamSock application, planning

functionality of, 306
dreamSock network library, creating,

248-303*
dreamSock.h, 220-225*
dreamSock_Broadcast function, 245-246*
dreamSock_CloseSocket function, 243*
dreamSock_GetCurrentSystemTime

function, 246*
dreamSock_GetPacket function, 243-244*
dreamSock_Initialize function, 229-230*
dreamSock_InitializeWinSock function,

230-231*
dreamSock_Linux_ GetCurrentSystem-

Time function, 246-247*
dreamSock_OpenUDPSocket function,

241-243*
dreamSock_SendPacket function, 244-245*
dreamSock_SetBroadcasting function,

239-240*
dreamSock_SetNonBlocking function, 239*
dreamSock_Shutdown function, 231-232*
dreamSock_Socket function, 238-239*
dreamSock_StringToSockaddr function,

240*
dreamSock_Win_ GetCurrentSystemTime

function, 247-248*
DROP DATABASE command, 21-22
DROP TABLE command, 28-29
DumpBuffer function, 270*

E
echo application, running, 160-161
echo TCP client, creating, 151-153*
echo TCP server, creating, 139-142*

545

Index

echo UDP client, creating, 157-159*
echo UDP server, creating, 146-150*
engine,

initializing, 526-527*
shutting down, 527*

ephemeral ports, 110
errno variable, using to retrieve error

number, 248
error handling, 120
error values, retrieving, 248
event object, 166-167
events,

detecting network, 163
processing, 186-187

Excel, using to enter data, 45-46
exceptions, catching, 306

F
FastTemplate, 90

converting to, 95-101
using, 91-95*

flag collisions, checking for, 475-476*
footer.php, 75-76*
Frame function, 477-478*, 530-531*
frame history, 430
frame time, monitoring, 428
frames,

comparing, 533-534*
running, 477-478*
storing, 430

ft.php, 91-92*
ft2.php, 94*
ftcore.php, 98*
ftusers.php, 99-101*
functions,

global, 229-248*
graphical, 190-193
using in PHP, 70-71

G
game,

adding to game list, 478-479*
creating log system for, 214-219*
removing from game list, 479-481*

game client, creating, 481-542*
game list,

adding game to, 478-479*
refreshing, 541*
removing game from, 479-481*

game lobby,
creating, 371-425*
creating dialogs for, 372-377,

380-386*
game logic, handling, 530-531*
game map,

drawing, 528-530*
generating, 467-468*

game platform, choosing, 113
game server,

creating, 430-481*
reasons for creating, 15

game tutorial code
client.cpp, 511-525*
client.h, 482-487*
common.h, 310*, 340*, 488
dreamSock.h, 220-225*
lobby.cpp, 389-398*, 408-418*,

478-481*, 541-542*
lobby.h, 377-378*, 406-407*
main.cpp, 310-316*, 341-347*,

380-389*, 407-408*, 436-437*,
488-490*

main.h, 309*, 379*
network.cpp, 437-449*, 490-502*
network.h, 309*, 340*, 379*, 407*,

436*, 487-488*
server.cpp, 458-467*
server.h, 431-435*
signin.cpp, 323-329*, 355-361*
signin.h, 307-308*, 338-339*

GenerateRandomMap function, 467-468*
GET method, 73
GetClientPointer function, 532*
GetNewPoint function, 254*
GetPacket function, 275-276*, 301-303*
getsockopt function, 173-174
GFX_Blit function, 192-193
GFX_Line function, 191
GFX_LoadBitmap function, 192
GFX_Pixel function, 191
GFX_Rect function, 191
GFX_RectFill function, 191
GFX_Tri function, 191
GFX_TriFill function, 191
global functions, 229-248*
graphical functions, 190-193

546

Index

graphics,
loading, 200-202*
rotating, 200-202*

graphics engine,
initializing, 526-527*
shutting down, 527*

H
header files, setting up for network library,

219-220*
header.php, 75*
heading, calculating, 469-470*
hosts,

identifying, 207-208
sending data to, 208-209

HWND, 4

I
I/O, controlling, 172
I/O strategies, 169
images,

displaying, 192-193
loading, 192, 200-202*
rotating, 200-202*

Include folder, 10
index.php, 64*
index2.php, 65*
index3.php, 67*
index4.php, 68-69*
index5.php, 70*
inet_aton function, 134
Init function, 253*
initialization, Windows, 115-120
Initialize function, 268-269*, 290*
InitializeEngine function, 526-527*
InitializeWinSock function, 117-119*
InitNetwork function, 362*, 449*
InitSockets function

TCP, 142-145, 154-155
UDP, 148-149, 159

input,
checking for, 532-533*
handling, 489*

input.php, 71-72*
input/output functions, 172-175
INSERT command, 30-32
International Organization for

Standardization, see ISO
Internet Protocol, see IP

ioctl function, 172-173
ioctlsocket function, 172-173
IP, 106-108

address classes, 107
addresses, 107

IPv4, 106-107
address structure, 121-122

IPv6, 107-108
address structure, 122

ISO, 104
iterative server, 112, 134

J
JoinGameDialogProc function, 382*

K
key, checking for status of, 352*
keyboard input, 193-195

checking for, 532-533*
handling, 489*

keyPress function, 352*
KillPlayer function, 532*

L
LAN, 136
LAN server, searching for, 175-176
latency, calculating, 209
Lib folder, 10
LIKE command, 39
line, drawing, 191
link table, 40

creating, 40-41
Linux, building network library in, 211-212
listen function, 127
little-endian order, 136
LOAD command, 44
lobby.cpp, 389-398*, 408-418*, 478-481*,

541-542*
lobby.h, 377-378*, 406-407*
LobbyDialogProc function, 384-386*
local area network, see LAN
log system, 213-214

creating, 214-219*
LoginDialogProc function, 382-383*
LogString function, 217-218*
loops, using in PHP, 67-68

547

Index

M
macros, socket descriptor, 164-165
main function, 353-355*

TCP, 153-154
main.cpp, 310-316*, 341-347*, 380-389*,

407-408*, 436-437*, 488-490*
main.h, 309*, 379*
main.tpl.html, 96*
mainbody.tpl.html, 93*
map,

drawing, 528-530*
generating, 467-468*

message loop, creating, 184-185*
messages,

building, 508-509*
compressing, 428-429
functions for working with, 271-279*
handling, 430
notification, 366*
parsing, 297-299*, 329-333*
reading, 362-366*, 399-401*,

418-425*, 449-451*
sending, 402-403*, 504-505*
sending to clients, 303*
sending to server, 336*
system vs. user, 270-271
update, 8-9

messaging system, in Windows, 3-4
MoveObjects function, 539-540*
MovePlayer function, 472-475*
multicast IP addresses, 107
multiplay, 134
multiple templates, using, 93-95*
multiplexing, 171
multiplexing I/O, 171
multitasking, 4
multithreading, 4, 167-168
MySQL, 15

connecting to database with, 78-79*
data types, 22-23
installing, 16-19
storing data with, 79-84*
using, 78-90*

MySQL C++ interface, see MySQL++
MySQL example,

connecting to database and retrieving
data, 50-53*

updating data from an application,
53-55*

MySQL server, running, 19
MySQL++, 50
mysql1.php, 79*
mysqlcore.php, 80*, 85*
mysqldump utility, 47

N
NET_WinSockInitialize function, TCP, 142
network,

initializing, 449*
running, 509-510*

network application, creating with
dreamSock, 305-369*

network byte order, 136
network events, detecting, 163
network functionality, designing, 428-430
network latency, calculating, 209
network layer, 105
network library,

building, 209-212
creating dreamSock, 248-303*
initializing, 229-230*
planning, 206-207
reasons for creating, 205-206
setting up files for, 219-220*
shutting down, 231-232*

network protocol, see protocol
network system, running, 337-338*, 369*,

404-405*
network.cpp, 437-449*, 490-502*
network.h, 309*, 340*, 379*, 407*, 436*,

487-488*
non-blocking I/O, 170
non-blocking socket, 144

O
Open Systems Interconnection model, see

OSI model
OpenGL libraries, adding to workspace,

183
operators, using in PHP, 67-68
OSI model, 104

layers, 104-105
usage of, 105

output.php, 72*

548

Index

P
page1.php, 77
page2.php, 77
ParsePacket function, 273-275*, 297-299*
PHP,

arrays in, 70
conditional statements in, 68-70
connecting to database with, 78-79*
functions in, 70-71
operators and loops in, 67-68
testing installation of, 62
updating data with, 84-90*
user input in, 71-73
using, 63-73
variables in, 65-66

PHP4, installing on Apache web server,
60-63

physical layer, 105
pinging, 209
pixel, plotting, 191
platforms,

and data types, 121, 212-213
and sockets, 113
and sockets API, 112-113
choosing, 113
Unix, 113
Windows, 113

player,
calculating heading of, 536-537*
calculating velocity of, 535-536*
moving, 472-475*, 539-540*
moving back to start position, 532*
predicting movement of, 537-539*
returning pointer to, 532*

player list,
refreshing, 541-542*
updating, 398-399*

port numbers, 109
ports, 109-110
POST method, 73
PredictMovement function, 537-539*
presentation layer, 105
primary key, 40
primitives, moving, 195-199*
println function, 215-216*
program, running as daemon, 351-352*
project,

adding static libraries to, 183

creating, 182-189
protocol, 103-104

connectionless, 109
connection-oriented, 108

pthread_create function, 169

R
Read function, 257-258*
ReadByte function, 258*
ReadDeltaMoveCommand function,

452-453*, 506-508*
ReadFloat function, 259*
ReadLong function, 259*
ReadMoveCommand function, 505-506*
ReadPackets function, 329-333*, 362-366*,

399-401*, 418-425*, 449-451*
ReadShort function, 258-259*
ReadString function, 259-260*
rectangle, drawing, 191
recv function, 131-132
recvfrom function, 133
RefreshGameList function, 541*
RefreshJoinedPlayersList function,

541-542*
RefreshPlayerList function, 398-399*
relational database, 40-41 see also database
release version, 12
RemoveClient function, 295-297*,

334-335*, 367-368*
RemoveClients function, 335-336*, 368*
RemoveGame function, 479-480*
RemoveGames function, 481*
RequestGameData function, 401*
Reset function, 270*
RunNetwork function, 337-338*, 369*,

404-405*, 509-510*

S
select function, 163-164
SELECT statements,

conditional, 37-39
using, 35-39

send function, 129-131
SendAddClient function, 290-292*
SendChat function, 402*
SendCommand function, 451-452*,

502-504*
SendConnect function, 271-272*
SendCreateGame function, 402*

549

Index

SendDisconnect function, 272*
SendDlgItemMessage function, 9
SendExitNotification function, 366*
SendKeepAlive function, 336*
SendPacket function, 276-279*
SendPackets function, 303*
SendPing function, 272-273*, 293*
SendRemoveClient function, 292-293*
SendRemoveGame function, 402*
SendRequestNonDeltaFrame function,

504*
SendSignIn function, 336*
SendStartGame function, 403*, 504*
sendto function, 132
server application, creating, 338-369*
server.cpp, 458-467*
server.h, 431-435*
ServerProcess function

TCP, 145-146*
UDP, 149-150

servers, 134-135
connecting to, 337*, 403*
connecting with client, 126
creating, 136-137, 430-481*
creating for game lobby, 406-425*
creating TCP, 139-142*
creating UDP, 146-150*
disconnecting from, 337*, 403-404*,

527*
initializing, 362*
reasons for storing game data on, 15
searching for, 175-176
types of, 112, 134-135
uninitializing, 362*

session layer, 105
setsockopt function, 173-174
SHOW DATABASES command, 19-22
SHOW TABLES command, 25-26
shutdown function, 174-175
Shutdown function, 527*
ShutdownNetwork function, 362*
signal-driven I/O, 170-171
sign-in system, creating, 306-369*
signin.cpp, 323-329*, 355-361*
signin.h, 307-308*, 338-339*
simple.tpl.html, 91*
skeleton project, creating, 182-189
socket descriptor macros, 164-165

socket function, 124
socket functions, global, 232-248*
sockets, 110-111

addresses of, 112
binding address to, 125-126
blocking, 144
broadcasting, 245-246*
closing, 129, 243*, 290*
connected, 128
controlling I/O mode of, 172-173
converting address string of, 240*
creating, 124, 238-239*, 290*
data types of, 121
disabling, 174-175
getting options for, 173-174
initializing, 142-145, 148-149,

154-155, 159
non-blocking, 144
opening UDP, 241-243*
receiving data in, 131-133
sending data to, 129-132
setting blocking mode of, 239*
setting for incoming connections,

127
setting options for, 173-174
setting to broadcast, 239-240*
types of, 111-112

sockets API, 110
and platforms, 112-113

sockets functions,
basic, 124-129
input/output, 129-133

source files,
adding to project, 183
setting up for network library,

219-220*
SQL, 19
StartConnection function, 502*
StartLog function, 216-217*
StartLogConsole function, 214
static libraries, adding to project, 183
static link library, 9-10

creating, 10-13
structure of, 10
using, 13-14

StopLog function, 218-219*
stream socket, 111
structured query language, see SQL

550

Index

system messages vs. user messages,
270-271

system time, checking, 246-248

T
tablerow.tpl.html, 94*
tables,

adding data to, 30-32, 41
adding to relational database, 40-41
creating, 24-26
deleting data from, 34-35
dropping, 28-29
modifying, 26-28
modifying data in, 32-34
naming restrictions, 20
viewing columns in, 26

TCP, 106, 108
TCP client, 150-151

creating, 151-153*
TCP connection,

accepting incoming, 128
listening for, 127

TCP server, 137-138
creating, 139-142*

TCP/IP, 106
templates, 90

creating, 95-96*
using, 91-95*
using multiple, 93-95*

test.php, 62*
text file, using to enter data, 44-45
thread, 134-135

creating, 168-169
timing out, 209
Transmission Control Protocol, see TCP
Transmission Control Protocol/Internet

Protocol, see TCP/IP
transport layer, 105, 108
triangle, drawing, 191
typecasting, 123

U
UDP, 106, 109
UDP client, 151

creating, 157-159*
UDP server, 138-139

creating, 146-150*
UDP socket, opening, 241-243*
Uninitialize function, 269*, 290*

Unix,
as game platform, 113
building network library in, 211-212
input/output functions, 172-175
multithreading in, 169
sockets functions, 124-133

UPDATE command, 32-34
update message, 8-9
USE command, 25
User Datagram Protocol, see UDP
user input, in PHP, 71-73
user messages vs. system messages,

270-271
userlist.tpl.html, 96-97*
userlist_row.tpl.html, 97*
users.php, 81-82*, 85-88*

V
variables,

initializing, 253*
resetting, 235*
using in PHP, 65-66

VectorLength function, 488-489*
vectors, working with, 488-489*
VectorSubtract function, 488-489*
velocity, calculating, 468-472*
victory conditions, checking, 531-532*
Visual Studio,

configuring, 181-182
creating static link library with,

10-13
creating window with, 4-6
finding static link library with, 13-14

W
web server, see Apache web server
welcome.php, 74*, 76-77*
well-known ports, 109
WHERE command, 37-39
Win32 functions,

input/output, 172-175
sockets, 124-133

windowed application, creating, 184-189*
WindowProc function, 347*
windows, see also dialogs

creating, 4-6
handle, 4
updating, 8-9

551

Index

Windows,
as game platform, 113
building network library in, 210-211
callback procedure, see WndProc
messaging system, 3-4
multithreading in, 167-168

Windows Sockets, see WinSock
WinMain function, 5, 7-8, 184-185*,

319-323*, 347-351*, 386-389*
WinSock, 112-113

initializing, 115-120
WinSock API, initializing, 230-231*
WM_CLOSE event, 186-187
WM_KEYDOWN event, 187
WM_KEYUP event, 187
WM_SIZE event, 187
WndProc, 5, 185-186*

workspace,
adding static libraries to, 183
creating, 182-183

Write function, 255*
WriteByte function, 255-256*
WriteFloat function, 256*
WriteLong function, 256*
WriteShort function, 256*
WriteString function, 257*
WSAAsyncSelect function, 165
WSACleanup function, 116
WSAEnumProtocols function, 117, 120
WSAEventSelect function, 165-166
WSAGetLastError function, 120

using to retrieve error number, 248
WSAStartup function, 115-116
WSAWaitForMultipleEvents function, 166

552

Index

This page intentionally left blank.

Visit us online at www.wordware.com for more information.

Strategy Game Programming
with DirectX 9.0
1-55622-922-4 • $59.95
6 x 9 • 560 pp.

Introduction to 3D Game
Programming with DirectX 9.0
1-55622-913-5 • $49.95
6 x 9 • 424 pp.

ShaderX2: Introductions &
Tutorials with DirectX 9
1-55622-902-X • $44.95
6 x 9 • 384 pp.

Advanced 3D Game
Programming with DirectX 9.0
1-55622-968-2 • $59.95
6 x 9 • 552 pp.

ShaderX2: Shader Programming
Tips & Tricks with DirectX 9
1-55622-988-7 • $59.95
6 x 9 • 728 pp.

Learn Vertex and Pixel Shader
Programming with DirectX 9
1-55622-287-4 • $34.95
6 x 9 • 304 pp.

DirectX 9 Audio Exposed:
Interactive Audio Development
1-55622-288-2 • $59.95
6 x 9 • 568 pp.

Looking

Check out Wordware’s market-
featuring the following new

DirectX 9 User Interfaces: Design
and Implementation
1-55622-249-1 • $44.95
6 x 9 • 376 pp.

Games That Sell!
1-55622-950-X • $34.95
6 x 9 • 336 pp.

Game Design Foundations
1-55622-973-9 • $39.95
6 x 9 • 400 pp.

Game Design: Theory and Practice
1-55622-735-3 • $49.95
7½ x 9¼ • 608 pp.

Vector Game Math Processors
1-55622-921-6 • $59.95
6 x 9 • 528 pp.

Java 1.4 Game Programming
1-55622-963-1 • $59.95
6 x 9 • 672 pp.

3D Math Primer for Graphics and
Game Development
1-55622-911-9 • $49.95
7½ x 9¼ • 448 pp.

Use the following coupon code for online specials: pmg0766

for more?

leading Game Developer ’s Library
releases and backlist titles.

Game Development and Production
1-55622-951-8 • $49.95
6 x 9 • 432 pp.

CGI Filmmaking: The Creation of Ghost
Warrior
1-55622-227-0 • $49.95
9 x 7 • 344 pp.

Essential LightWave 3D 7.5
1-55622-226-2 • $44.95
6 x 9 • 424 pp.

LightWave 3D 7.5 Lighting
1-55622-354-4 • $69.95
6 x 9 • 496 pp.

LightWave 3D 7 Character
Animation
1-55622-901-1 • $49.95
7½ x 9¼ • 360 pp.

Looking for more?

Check out Wordware’s market-leading Game
Developer ’s Library featuring the following new

releases, backlist, and upcoming titles.

Visit us online at www.wordware.com for more information.

Use the following coupon code for online specials: pmg0766

LightWave 3D 8: 1001 Tips & Tricks
1-55622-090-1 • $39.95
6 x 9 • 500 pp.

LightWave 3D 8 Cartoon
Character Creation
1-55622-083-9 • $49.95
6 x 9 • 500 pp.

Modeling a Character in 3DS Max
(2nd Edition)
1-55622-088-X • $44.95
6 x 9 • 550 pp.

Fundamentals of Character Animation
1-55622-248-3 • $49.95
9 x 7 • 400 pp.

Design First for 3D Animators
1-55622-085-5 • $49.95
9 x 7 • 350 pp.

Advanced Lighting and Materials with
Shaders
1-55622-292-0 • $59.95
9 x 7 • 500 pp.

About the CD

The companion CD contains all the source code from the book as well
as many useful tools and applications discussed in the book.

The CD will autorun when you insert it in your CD drive. Click the
Continue button on the page that appears to view the contents. (If the
CD does not autorun, simply use Windows Explorer to browse the CD.)

The directories and their contents are:

� Software — MySQL for Linux and Windows, DBI modules for Perl,
WinZip 8.0 SHAREWARE EVALUATION version (not the regis-
tered version), the Apache package, the FastTemplate class, and
Adobe Acrobat Reader

� Source — Source code from the book

� Libraries — dreamSock, OpenGL, 2DLIB, 3DLIB, and MySQL++

CD/Source Code Usage License Agreement

Please read the following CD/Source Code usage license agreement before opening the CD and
using the contents therein:

1. By opening the accompanying software package, you are indicating that you have read and
agree to be bound by all terms and conditions of this CD/Source Code usage license
agreement.

2. The compilation of code and utilities contained on the CD and in the book are copyrighted
and protected by both U.S. copyright law and international copyright treaties, and is owned
by Wordware Publishing, Inc. Individual source code, example programs, help files, freeware,
shareware, utilities, and evaluation packages, including their copyrights, are owned by the
respective authors.

3. No part of the enclosed CD or this book, including all source code, help files, shareware,
freeware, utilities, example programs, or evaluation programs, may be made available on a
public forum (such as a World Wide Web page, FTP site, bulletin board, or Internet news
group) without the express written permission of Wordware Publishing, Inc. or the author of
the respective source code, help files, shareware, freeware, utilities, example programs, or
evaluation programs.

4. You may not decompile, reverse engineer, disassemble, create a derivative work, or other-
wise use the enclosed programs, help files, freeware, shareware, utilities, or evaluation
programs except as stated in this agreement.

5. The software, contained on the CD and/or as source code in this book, is sold without war-
ranty of any kind. Wordware Publishing, Inc. and the authors specifically disclaim all other
warranties, express or implied, including but not limited to implied warranties of merchant-
ability and fitness for a particular purpose with respect to defects in the disk, the program,
source code, sample files, help files, freeware, shareware, utilities, and evaluation programs
contained therein, and/or the techniques described in the book and implemented in the
example programs. In no event shall Wordware Publishing, Inc., its dealers, its distributors,
or the authors be liable or held responsible for any loss of profit or any other alleged or
actual private or commercial damage, including but not limited to special, incidental, conse-
quential, or other damages.

6. One (1) copy of the CD or any source code therein may be created for backup purposes. The
CD and all accompanying source code, sample files, help files, freeware, shareware, utilities,
and evaluation programs may be copied to your hard drive. With the exception of freeware
and shareware programs, at no time can any part of the contents of this CD reside on more
than one computer at one time. The contents of the CD can be copied to another computer,
as long as the contents of the CD contained on the original computer are deleted.

7. You may not include any part of the CD contents, including all source code, example pro-
grams, shareware, freeware, help files, utilities, or evaluation programs in any compilation of
source code, utilities, help files, example programs, freeware, shareware, or evaluation pro-
grams on any media, including but not limited to CD, disk, or Internet distribution, without
the express written permission of Wordware Publishing, Inc. or the owner of the individual
source code, utilities, help files, example programs, freeware, shareware, or evaluation
programs.

8. You may use the source code, techniques, and example programs in your own commercial or
private applications unless otherwise noted by additional usage agreements as found on the
CD.

WARNING By opening the CD package, you accept the terms and
conditions of the CD/Source Code Usage License Agreement.
Additionally, opening the CD package makes this book nonreturnable.

	Programming Multiplayer Games
	Cover

	Contents
	About the Authors
	Introduction
	Part I - Theory
	Chapter 1 Introduction to Windows Programming
	Introduction
	Windows Messaging System
	Creating a Window
	Sending Information to Your Window
	Static Link Libraries
	Creating a Static Link Library
	Using a Static Link Library

	Summary

	Chapter 2 Using Databases
	Introduction
	What Is MySQL?
	Installing MySQL
	SQL Statements
	Data Definition Language
	Creating and Dropping Databases
	Creating a Database
	Dropping a Database

	Column (Field) Types in MySQL
	Adding, Modifying, and Dropping Tables
	Creating Tables
	Modifying Tables
	Dropping (Removing) Tables

	Data Manipulation Language (DML)
	Inserting Data
	Modifying Data
	Removing (Deleting) Data
	Using Select Statements

	Relational Databases
	Data Import Methods
	Importing from a Text File
	Importing from a Native Source

	Backing Up and Restoring Data
	Backing up a Database to a File
	Restoring a Backed-Up Database

	MySQL C++ Interface
	Example 1 - Connecting and Retrieving Data from MySQL
	Example 2 - Updating Data in MySQL from an Application

	Summary

	Chapter 3 Creating Web-Based Server Interfaces
	Introduction
	Setting Up an Apache 1.3.x Web Server
	Installing PHP4 for Apache 1.3.x
	Using PHP: Hypertext Preprocessor
	The Basics
	Example 1 - index.php

	Variables
	Example 2 - index2.php

	Operators and Loops
	Example 3 - index3.php

	Conditional Statements
	Example 4 - index4.php

	Arrays
	Functions
	Example 5 - index5.php

	User Input
	Example 6a - input.php
	Example 6b - output.php

	The "Command" System
	Example 7a - core.php
	Example 7b - welcome.php
	Example 8a - core.php
	Example 8b - welcome.php
	Example 8c - page1.php
	Example 8d - page2.php

	Accessing MySQL
	MySQL Example 1 - Connecting and Disconnecting
	MySQL Example 2 - Storing and Retrieving Data
	MySQL Example 3 - Updating and Removing Data

	Using FastTemplate
	Multiple Templates
	Converting the Command Parser Example to FastTemplate

	Summary

	Chapter 4 Introduction to TCP/IP
	Introduction
	What Is a Protocol?
	OSI Model
	OSI Model Layers

	Internet Protocol
	Introduction to the Transport Layer
	Transmission Control Protocol
	User Datagram Protocol

	Ports
	Introduction to Sockets
	Socket Types
	Address
	Platforms
	History of WinSock

	Summary

	Chapter 5 Basic Sockets Programming
	Introduction
	WinSock Initialization
	WSAStartup Function (Win32)
	WSACleanup Function (Win32)
	WSAEnumProtocols Function (Win32)
	WinSock Initialization Function

	Error Handling
	WSAGetLastError Function (Win32)

	Sockets Data Types
	Platform-specific Data Types
	Address Structures
	IPv4 Address Structure
	IPv6 Address Structure
	Generic Address Structure

	Basic Sockets Functions
	socket Function (Unix, Win32)
	bind Function (Unix, Win32)
	connect Function (Unix, Win32)
	listen Function (Unix, Win32)
	accept Function (Unix, Win32)
	close Function (Unix)/closesocket Function (Win32)
	Input/Output Functions
	send Function (Unix, Win32)
	recv Function (Unix, Win32)
	sendto Function (Unix, Win32)
	recvfrom Function (Unix, Win32)

	Address Data Conversion Functions
	inet_aton Function (Unix, Win32)

	Client/Server Programming
	Server Methods
	Clients

	Byte Ordering
	Creating a Server
	TCP
	UDP
	Simple Echo TCP Server
	main Function
	InitSockets Function
	ServerProcess Function

	Simple Echo UDP Server
	InitSockets Function
	ServerProcess Function

	Creating a Client
	TCP
	UDP
	Simple Echo TCP Client
	main Function
	InitSockets Function
	ClientProcess Function

	Simple Echo UDP Client
	InitSockets Function
	ClientProcess Function

	Running the Simple Echo Application
	Summary

	Chapter 6 I/O Operations
	Introduction
	Detecting Network Events
	select (Unix, Win32)
	Macros
	WSAAsyncSelect (Win32)
	WSAEventSelect (Win32)
	WSAWaitForMultipleEvents (Win32)
	Event Object

	Multithreading
	What Is Multithreading?
	CreateThread (Win32)
	pthread_create (Unix)

	I/O Strategy
	Blocking I/O
	Non-blocking I/O
	Signal-driven I/O
	Multiplexing I/O

	I/O Control
	ioctl (Unix)/ioctlsocket (Win32)
	setsockopt/getsockopt (Unix, Win32)
	shutdown (Unix, Win32)

	Broadcasting
	Searching for Servers
	Broadcast Function

	Summary

	Part II - Tutorials
	Tutorial 1 Using 2DLIB
	Introduction
	Configuring Visual Studio
	Creating a Skeleton Project
	Creating the Workspace
	Adding the Static Libraries
	Adding the Source File
	Creating a Basic Windowed Application with 2DLIB
	The WinMain Function
	The Windows Procedure
	The Complete Code

	Using the 2DLIB Graphics Routines
	2D Positions on the Screen
	Use of Colors
	Plotting a Single Pixel
	Drawing a Line
	Drawing a Rectangle/Filled Rectangle
	Drawing a Triangle/Filled Triangle
	Graphic Loading Functions
	Graphics Display (Blitting) Function
	Keyboard Input Method

	2DLIB Example 1 - Moving Primitives with the Cursor Keys
	Complete Code Listing for Example 1

	2DLIB Example 2 - Loading and Rotating Graphics
	Complete Code Listing for Example 2

	Summary

	Tutorial 2 Creating Your Network Library
	Introduction
	Why Create a Network Library of Our Own?
	Planning the Structure
	Planning the Functionality
	Identifying Hosts
	Sending Data to Hosts
	Pinging - Calculating Network Latency
	Timing Out

	Building the Library
	Windows
	Unix/Linux

	Creating Independent Code
	Creating Definitions for Data Types

	Log System
	StartLogConsole Function
	dreamConsole Constructor
	dreamConsole Destructor
	println Function
	StartLog Function
	LogString Function
	StopLog Function

	Getting Started
	Setting Up Source and Header Files
	dreamSock.h File
	dreamMessage Class
	dreamClient Class
	dreamServer Class

	Global Setup Functions
	dreamSock_Initialize
	dreamSock_InitializeWinSock
	dreamSock_Shutdown

	Global Socket Functions
	dreamSock_Socket Function
	dreamSock_SetNonBlocking Function
	dreamSock_SetBroadcasting Function
	dreamSock_StringToSockaddr Function
	dreamSock_OpenUDPSocket Function
	dreamSock_CloseSocket Function
	dreamSock_GetPacket Function
	dreamSock_SendPacket Function
	dreamSock_Broadcast Function
	dreamSock_GetCurrentSystemTime Function
	dreamSock_Linux_GetCurrentSystemTime Function
	dreamSock_Win_GetCurrentSystemTime Function

	Retrieving Error Values
	Summary of Global Functions

	Creating dreamSock Network Library
	dreamMessage Class Member Variables
	dreamMessage Class Functionality
	Init Function
	Clear Function
	GetNewPoint Function
	AddSequences Function
	Write Function
	WriteByte Function
	WriteShort Function
	WriteLong Function
	WriteFloat Function
	WriteString Function
	BeginReading Function
	Read Function
	ReadByte Function
	ReadShort Function
	ReadLong Function
	ReadFloat Function
	ReadString Function
	dreamMessage Summary

	dreamClient Class Member Variables
	dreamClient Class Functionality
	dreamClient Constructor
	dreamClient Destructor
	Initialize Function
	Uninitialize Function
	Reset Function
	DumpBuffer Function
	System Messages vs User Messages
	SendConnect Function
	SendDisconnect Function
	SendPing Function
	ParsePacket Function
	GetPacket Function
	SendPacket Function (Internal Message)
	SendPacket Function (External Message)
	dreamClient Summary

	dreamServer Class Member Variables
	dreamServer Class Functionality
	dreamServer Constructor
	dreamServer Destructor
	Initialize Function
	Uninitialize Function
	SendAddClient Function
	SendRemoveClient Function
	SendPing Function
	AddClient Function
	RemoveClient Function
	ParsePacket Function
	CheckForTimeout Function
	GetPacket Function
	SendPackets Function
	dreamServer Summary

	Summary

	Tutorial 3 Creating a Basic Network Application with dreamSock
	Introduction
	Planning the Functionality
	Catching Exceptions

	Creating a Basic Client Application
	signin.h File
	CSignin Class
	network.h File
	main.h File
	common.h File
	main.cpp File
	Global Variables
	CreateAccountDialogProc Function
	WinMain Function
	signin.cpp File - CSignin Class Methods
	CSignin Constructor
	CSignin Destructor
	ReadPackets Function
	AddClient Function
	RemoveClient Function
	RemoveClients Function
	SendSignIn Function
	SendKeepAlive Function
	Connect Function
	Disconnect Function
	RunNetwork Function

	Creating a Basic Server Application
	signin.h File
	CSigninServer Class
	network.h File
	common.h File
	main.cpp File
	Global Variables
	WindowProc Function
	WinMain Function
	daemonInit Function
	keyPress Function
	main Function
	signin.cpp File - CSigninServer Class Methods
	CSigninServer Constructor
	CSigninServer Destructor
	InitNetwork Function
	ShutdownNetwork Function
	ReadPackets Function
	SendExitNotification Function
	AddClient Function
	RemoveClient Function
	RemoveClients Function
	RunNetwork Function

	Summary

	Tutorial 4 Creating the Game Lobby
	Introduction
	Creating the Lobby Client Application
	Creating the Dialogs
	Lobby Dialog
	Create Game Dialog
	Create View Players Dialog
	Join Game Dialog

	Lobby System Code
	Lobby Client Code
	lobby.h File
	network.h File
	main.h File
	main.cpp File
	CreateViewPlayersDialogProc Function
	CreateGameDialogProc Function
	JoinGameDialogProc Function
	LoginDialogProc Function
	LobbyDialogProc Function
	WinMain Function

	lobby.cpp File - CLobby Class Methods
	RefreshPlayerList Function
	ReadPackets Function
	RequestGameData Function
	SendChat Function
	SendCreateGame Function
	SendRemoveGame Function
	SendStartGame Function
	Connect Function
	Disconnect Function
	RunNetwork Function
	Unimplemented Functions
	Lobby Server Code
	lobby.h File
	network.h File
	main.cpp File
	lobby.cpp File - CLobbyServer Class Methods
	ReadPackets Function
	Unimplemented Functions

	Summary

	Tutorial 5 Creating Your Online Game
	Introduction
	Designing the Functionality
	Frame Time
	Compressing Messages
	Dead Reckoning
	Frame History
	Handling Messages

	Game Server Code
	server.hFile
	network.h File
	main.cpp File
	network.cpp File - CArmyWarServer Class Part 1
	InitNetwork Function
	ReadPackets Function
	SendCommand Function
	ReadDeltaMoveCommand Function
	BuildMoveCommand Function
	BuildDeltaMoveCommand Function

	server.cpp File - CArmyWarServer Class Part 2
	GenerateRandomMap Function
	CalculateVelocity Function
	CalculateHeading Function
	CalculateBulletVelocity Function
	MovePlayer Function
	CheckFlagCollisions Function
	Frame Function

	lobby.cpp File
	AddGame Function
	RemoveGame Function
	RemoveGames Function
	Summary of Server Code

	Game Client Code
	client.h File
	network.h File
	common.h File
	main.cpp File
	VectorLength and VectorSubtract Functions
	ApplicationProc Function
	Dialog Procedures
	Main Loop

	network.cpp File
	StartConnection Function
	SendCommand Function
	SendStartGame Function
	SendRequestNonDeltaFrame Function
	Connect Function
	Disconnect Function
	ReadMoveCommand Function
	ReadDeltaMoveCommand Function
	BuildDeltaMoveCommand Function
	RunNetwork Function

	client.cpp File
	CArmyWar Constructor and Destructor Functions
	InitializeEngine Function
	Shutdown Function
	DrawMap Function
	Frame Function
	CheckVictory Function
	KillPlayer Function
	GetClientPointer Function
	CheckKeys Function
	CheckPredictionError Function
	CheckBulletPredictionError Function
	CalculateVelocity Function
	CalculateHeading Function
	PredictMovement Function
	MoveObjects Function

	lobby.cpp File
	RefreshGameList Function
	RefreshJoinedPlayersList Function

	Other Unimplemented Functions

	Summary

	Index
	Team DDU

